

MATRIX PROPERTY PROGRAM

PROGRAM RESPONSIBLE FOR:

- MEASUREMENT OF STATE VARIABLES OF ROCK MATRIX DESCRIBING IN SITU WATER CONTENT AND WATER POTENTIAL OF YUCCA MOUNTAIN
- CHARACTERIZATION OF HYDROLOGIC PROPERTIES OF ROCK MATRIX FOR FLOW MODELS:
 - BULK DENSITY, POROSITY
 - WATER RETENTION
 - UNSATURATED HYDRAULIC CONDUCTIVITY
- DEVELOPMENT OF 3-D SPATIAL STRUCTURE OF THESE HYDROLOGIC PROPERTIES

STATISTICAL ANALYSIS

CLASSICAL STATISTICS

- BASIS OF INITIAL SAMPLING SCHEME

• GEOSTATISTICS

- 3-DIMENSIONAL
- MULTIVARIATE
- STRUCTURAL ANALYSIS (VARIOGRAPHY)
- PREDICTION (KRIGING, COKRIGING, ETC.)
- SIMULATION

ONE DIMENSIONAL SPATIAL VARIABILITY OF NEUTRON COUNTS IN TWO BOREHOLES IN G-TUNNEL

ONE DIMENSIONAL SPATIAL VARIABILITY OF NEUTRON COUNTS IN THREE BOREHOLES IN G-TUNNEL

YUCCA MOUNTAIN SYSTEMATIC DRILLING

YUCCA MOUNTAIN SYSTEMATIC DRILLING PROGRAM SMALL SCALE VARIABILITY TEST DRILL HOLE LOCATION

ø

HISTOGRAM OF DATA PAIRS FOR GEOSTATISTICAL ANALYSIS

MEASURING AND MODELING MATRIX PROPERTIES

- WATER CONTENT
- WATER POTENTIAL
- PERMEABILITY (GAS AND LIQUID)
 - SATURATED
 - UNSATURATED
 - MODELS
- WATER CHARACTERISTIC CURVES
 - HYSTERESIS
 - MODELS
- RELATED PROPERTIES
 - BULK DENSITY
 - PARTICLE DENSITY
 - POROSITY

PHOTOGRAPH OF CORE IN LEXAN LINER

PHOTOGRAPH OF DIFFERENT SIZE CORE SAMPLES

.

.

WET DRILLED, NONWELDED

VOLUMETRIC WATER CONTENT

G-TUNNEL WATER POTENTIALS NONWELDED TUFF

WATER POTENTIAL, BARS

IMBIBITION AND EVAPORATION

DEGREE OF SATURATION

TIME (LOG mins)

IMBIBITION MEASUREMENTS TO DETERMINE SORPTIVITY, s

SORPTIVITY AT DIFFERENT INITIAL SATURATIONS

SATURATION

USING SORPTIVITY TO EVALUATE SCALE

WATER RETENTION CURVES ON NONWELDED TUFF USING THREE METHODS

SUBMERSIBLE PRESSURIZED OUTFLOW CELL (SPOC)

.

Gravimetric Water Content (g/g)

Water Potential (log of kilopascals)

Density (g/cm³)

RANGE IN CORE PROPERTY VALUES CURRENTLY PUBLISHED FOR YUCCA MOUNTAIN GEOHYDROLOGIC UNITS

GEOHYDROLOGIC		GRAIN	DRY BULK	SATURATED
UNIT	POROSITY	DENSITY	DENSITY	CONDUCTIVITY
	(cm ³ /cm ³)	(g/cm ³)	(g/cm ³)	(cm/s)
TIVA CANYON w	.0812	2.3-2.8	1.4-2.4	1.5E-10-9.7E-10
PAINTBRUSH TUFF nw	.0654	2.2-2.6	1.1-2.4	2.3E-9 -2.4E-4
TOPOPAH SPRING w	.0433	2.4-2.6	1.8-2.4	1.2E-10-2.3E-7
CALICO HILLS nw	.1446	2.2-2.6	1.3-2.0	5.2E-10-2.9E-5
CRATER FLAT	.1938	2.5-2.6	1.6-2.1	2.0E-9 -6.9E-7

References Anderson (1981) Rush, Thordarson and Bruckheimer (1983) Thordarson (1983) Montazer and Wilson (1984) Weeks and Wilson (1987) Klavetter and Peters (1987) Flint and Flint (1989)

SUMMARY

- CURRENTLY REFINING METHODS TO MEASURE HYDROLOGIC PROPERTIES
- ONCE ENOUGH DATA IS COLLECTED, THOROUGH ANALYSIS AND MODIFICATIONS WILL DETERMINE THE APPROPRIATENESS OF EACH MODEL IN ORDER TO SIMPLIFY MODEL REQUIREMENTS
- SAMPLING AND TESTING STRATEGY IS BASED ON A GEOSTATISTICAL ANALYSIS WHICH WILL HELP DEFINE UNCERTAINTIES IN THE HYDROLOGIC STRUCTURE