	U.S. DEPARTMENT OF ENERGY
OFFICE OF	CIVILIAN RADIOACTIVE WASTE MANAGEMENT
	PRESENTATION TO
THE NUCLEAR	WASTE TECHNICAL REVIEW BOARD
SUBJECT:	IN SITU MONITORING -
	MEASURING FLUID-FLOW
	POTENTIAL FIELD
PRESENTER:	JOSEPH P. ROUSSEAU
PRESENTER'S TITLE	
AND ORGANIZATION:	HYDROLOGIST, U. S. GEOLOGICAL SURVEY
	DENVER, COLORADO
PRESENTER'S	(303) 236-5183

OVERVIEW OF PRESENTATION

- PURPOSE/SCOPE/MEASUREMENTS -AN OVERVIEW
- UZ-1 EXPERIENCE OBSERVATIONS
- G-TUNNEL EXPERIENCE AN ANALOG SITE
- BENEFITS OF IN SITU MONITORING

PURPOSE OF IN SITU MONITORING

DEFINE LIQUID AND VAPOR FLUX POTENTIALS

- PNEUMATIC PRESSURE POTENTIAL (CONVECTION)
- VAPOR PRESSURE POTENTIAL (DIFFUSION)
- WATER POTENTIAL (MATRIC AND OSMOTIC)
- THERMAL POTENTIAL

NMUZJR5P.A22/12-11-89

e

- DURATION OF MONITORING 3 TO 5 YEARS
- SENSORS READ EVERY FIVE HOURS
- APPROXIMATELY 1600 SENSORS INVOLVED
- 2 THERMOCOUPLE PSYCHROMETERS/STATION - 1 GAS SAMPLING "U" TUBE/STATION
- 2 THERMISTORS/STATION
- 2 PRESSURE TRANSDUCERS/STATION

- 2 SOLENOID VALVES/STATION

SAND FILLER)

- 16 INSTRUMENT STATIONS/BOREHOLE

INSTURMENT 16 VERTICAL BOREHOLES (12.25 in. diam.)

SOLID STEMMING DESIGN (GROUT AND

SCOPE

MEASUREMENTS

PRESSURE – (IN SITU RECALIBRATION OPTION)

- 0.005 PSIA ACCURACY (2 SIGMA)

- 1 PSIA TOTAL RANGE/2,500 FT.

• TEMPERATURE

- 0.005°C ACCURACY (2 SIGMA)
- 25°C TOTAL RANGE (15 40°C)

• WATER POTENTIAL (IN SITU VERIFICATION OPTION)

- ACCURACY RELATIVE (0.5 TO 1.0 BAR)
- -0.5 to > -70 BARS MOISTURE SUCTION

MEASUREMENTS

(CONTINUED)

• GAS SAMPLING

- DESIGNED TO INHIBIT CONDENSATION DURING VACUUM WITHDRAWAL OF PORE GASES
- DRY–CARRIER GAS (N₂) MIXED WITH SOURCE GAS
- MASS FLOW OF DRY AND MIXED GASES MEASURED
- DEW POINT TEMPERATURE OF MIXED GASES MEASURED
- VAPOR PRESSURE OF SOURCE GAS CALCULATED

UZ-1 EXPERIENCE

- SIGNIFICANT REVERSALS IN WATER POTENTIAL GRADIENTS ACROSS HYDROGEOLOGIC BOUNDARIES AND WITHIN HYDROGEOLOGIC UNITS
- RELATIVELY HIGH THERMAL ACTIVITY AT DEPTHS GREATER THAN 100 FEET
- UNIT HYDRAULIC GRADIENT ASSUMPTION ACROSS THICK SECTION OF TOPOPAH SPRING WELDED UNIT NOT SUPPORTED BY IN SITU MEASUREMENTS
- EQUILIBRATION TIME ON THE ORDER OF 18 TO 24 MONTHS ON AVERAGE — SOME STATIONS ON THE ORDER OF A FEW MONTHS
- UZ-1 SERVED AS A USEFUL PROTOTYPE AND WILL HELP GUIDE IMPROVED INSTRUMENTATION OF FUTURE UZ BOREHOLES

DETAILS OF THE STEMMING OF TEST BOREHOLE USW UZ-1

WATER POTENTIAL AT TEST BOREHOLE USW UZ-1 BASED ON DATA FROM THERMOCOUPLE PSYCHROMETERS

NMUZJR5P.A22/12-11-89 9

TEMPERATURE PROFILES AND DISTRIBUTION OF FRACTURE TRACES AT TEST BOREHOLE USW UZ-1

¹ DATA FOR JUNE 1985 FROM JOHN SASS (U.S. GEOLOGICAL SURVEY, WRITTEN COMMUN., 1985)

G TUNNEL EXPERIENCE

- 2 BOREHOLES INSTRUMENTED (3 STATIONS/ **BOREHOLE**)
- MONITORED FOR 1+ YEAR
- LIQUID AND VAPOR PHASES NOT IN "HYDRAULIC" EQUILIBRIUM WITHIN ZONE **AFFECTED BY THE ANNUAL TEMPERATURE** WAVE (WITHIN FIRST 20 FEET)
- CONVECTIVE TRANSPORT OF NEARLY VAPOR SATURATED AIR IS PREDOMINANT MECHANISM FOR DRYING OF NEAR-FIELD WALLROCK
- PRELIMINARY CALCULATIONS SUGGEST NEAR-FIELD DESATURATION AT THE RATE OF 0.1% PER YEAR

PROTOTYPE DRILLHOLE INSTRUMENTATION G TUNNEL UNDERGROUND FACILITY, NTS

12

PHYSICAL AND MATRIX HYDROLOGIC ROCK PROPERTIES

<u>Lab Sample No.</u>	<u>Depth_Interval</u> (ft)	<u>Grain Density</u> (gm/cc)	<u>Bulk Density</u> (gm/cc)		X Moisture Content by Weight (X)	Moisture Content <u>by Volume (%)</u>	Porosity (X)	<u>Saturation (%)</u>	Gas-Field <u>Porosity (%)</u>
			<u>Natural</u>	Dry					
D1-1									
6047	5.7-6.0	2.39	1.655	1.359	21.8	29.64	43.1	68.8	13.4
6048	12.4-12.9	2.50	1.830	1.639	11.7	19.12	34.4	55.6	15.3
DI-2									
6049	22.4-22.7	2.50	1.676	1.363	22.9	31.26	43.3	72.2	12.0
6050	39.3-39.6	2.44	1.670	1.340	24.6	32.99	45.1	73.2	12.1
6051	61.0-61.4	2.39	1.763	1.492	18.2	27.10	37.5	72.2	10.4
6052	79.4-79.8	2.61	1.630	1.284	26.9	34.55	50.7	68.1	16.2
6053	97.5-97 .8	2.42	1.547	1.245	24.2	30.15	48.4	62.2	18.3
6054	124.9-125.5	2.40	1.514	1.243	21.8	27.06	48.1	56.2	21.0
6055	140.0-140.6	2.41	1.504	1.220	23.2	28.36	49.3	57.6	20.9

(Data from Hoimes and Narver Materials Testing Laboratory, 1988)

THERMODYNAMIC ROCK PROPERTIES

Heat Capacity (C): $0.837 \frac{KJ}{Kg^{-0}K}$ - dry, nonwelded tuff (porosity = 45%, density = 1.32 gm/cc) 4.18 $\frac{KJ}{Kg^{-0}K}$ - water Thermal Conductivity (k): $0.59 - 1.24 \text{ W/m^{-0}K}$ - dry, nonwelded tuff (porosity 35 - 50%) 1.30 - 1.64 W/m^{-0}K - 100% saturated nonwelded tuff (porosity 35 - 50%) Thermal Diffusivity (D): $4.7 \times 10^{-7} \text{ m}^{-7} \text{m} \cdot \text{sec}$ - nonwelded tuff (porosity - 46.8%, saturation - 62%) where D = k/_{co}C

(Data from Blanford and Osnes, 1987; Hillel, 1971; Lappin and Nimick, 1985)

BOREHOLE DI-1 STATION B

HOURS

TEMPERATURE PROFILE DI-1 (VERTICAL)

(degrees C)

16

VAPOR PRESSURE PROFILES

. .

VAPOR PRESSURE PROFILE DI-2 (HORIZ)

WATER POTENTIAL DI-2 (HORIZONTAL)

PRESSURE TRANSDUCER RECORD

SUMMARY

- PNEUMATIC PRESSURE GRADIENTS INDICATE THAT CONVECTIVE FLOW OF INTERSTITIAL PORE GASES OCCURS CONTINUALLY BETWEEN THE NEAR-FIELD WALL ROCK AND THE DRIFT
- MEASURED TEMPERATURE CHANGES IN THE NEAR-FIELD WALL ROCK (WITHIN THE FIRST 15+ FEET OF THE DRIFT) ARE LESS THAN PREDICTED TEMPERATURE CHANGES
 - IN SUMMER THE WALL ROCK IS COOLER AND IN THE WINTER WARMER THAN PREDICTED
 - DIFFERENCES BETWEEN PREDICTED AND MEASURED TEMPERATURES ARE BELIEVED TO BE DUE TO EVAPORATION OF INTERSTITIAL PORE WATER IN THE SUMMER, AND TO CONDENSATION OF INTERSTITIAL WATER VAPOR IN THE WINTER DRIVEN BY SEASONAL TEMPERATURE CHANGES IN THE OPEN DRIFT

 CHANGES IN "APPARENT" WATER POTENTIAL BETWEEN WINTER AND SUMMER (AS MEASURED WITHIN THE FIRST 15 FEET OF THE WALL ROCK) CAN BE ATTRIBUTED TO AN INCREASE IN VAPOR PRESSURE DUE TO EVAPORATION OF LIQUID WATER COUPLED WITH THE CONVECTIVE FLOW OF NEARLY VAPOR SATURATED GASES FROM DEEPER WITHIN THE WALL ROCK

BENEFITS OF IN SITU MONITORING

• OBSERVE THE DYNAMICS OF THE SYSTEM

- IMPACT OF EPISODIC EVENTS
- IMPACT OF DIURNAL, SEASONAL, AND ANNUAL HARMONICS
- OBTAIN PNEUMATIC PRESSURE AND TEMPERATURE MEASUREMENTS
- EVALUATE EQUILIBRIUM PROCESSES
- ISOLATE DISCRETE INTERVALS OF INTEREST
 - FRACTURE ZONES
 - STRATIGRAPHIC AND STRUCTURAL CONTACTS
 - HYDROGEOLOGIC BOUNDARIES
- PROVIDE A PLATFORM FOR ISOLATION OF ROCK GASES FOR GEOCHEMICAL SAMPLING

NMUZJR5P.A22/12-11-89 23