

OFFICE OF	U.S. DEPARTMENT OF ENERGY CIVILIAN RADIOACTIVE WASTE MANAGEMENT
THE NUCLEAR	PRESENTATION TO WASTE TECHNICAL REVIEW BOARD
SUBJECT:	MODELING OF GLASS DISSOLUTION
PRESENTER:	WILLIAM L. BOURCIER
PRESENTER'S TITLE AND ORGANIZATION:	GEOCHEMIST EARTH SCIENCES DEPARTMENT LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CALIFORNIA
PRESENTER'S IELEPHONE NUMBER:	(415) 423-3745

.

WHAT DOES A VALIDATED RELEASE MODEL REQUIRE?

- A CONCEPTUAL MODEL BASED UPON A FUNDAMENTAL UNDERSTANDING OF THE GLASS DISSOLUTION MECHANISMS
 - DATA TO SUPPORT THE MODEL FROM SIMPLE EXPERIMENTS DESIGNED TO ISOLATE INDIVIDUAL GLASS DISSOLUTION MECHANISMS
 - A DATABASE OF SITE-SPECIFIC AND NATURAL ANALOGUE DATA TO TEST THE MODEL

GLASS COMPOSITIONS (CATION MOLE %)

Component	SRL-165	Simple Glass (nominal)
Si	43.4	42.3
Fe	6.2	
Al	4.7	10.5
В	9.7	12.1
Na	14.5	30.0
Li	16.0	_
Са	1.2	5.1
Mg	0.8	
U	0.5	_
Mn	1.4	
Ni	1.2	_
Ba	.03	-
Ti	.07	_
Zn	.02	-
Zr	.03	
Cs	.06	
Sr	.05	
Р	2.0	

SCHEMATIC OF GLASS ALTERATION LAYERS AND ELEMENT PROFILES

GLASS DISSOLUTION MODEL

Dissolution of gel layer controls glass dissolution rates

- short-term dissolution affinity of gel
- long-term precipitation of secondary phases

AEM MICROGRAPH OF REACTED GLASS SURFACE

NORMALIZED RELEASE FROM SRL-165 GLASS AT 150°C

MODELING APPROACHES AND LIMITATIONS

- SOLUBILITY LIMITS
 - ASSUME PURE CRYSTALLINE PHASES PRECIPITATE AND CONTROL RADIONUCLIDE SOLUBILITIES
- HYDRATION THEORY
 - PROVIDES RELATIVE DURABILITIES OF GLASSES FROM SIMPLE THERMODYNAMIC MODEL BUT CAN NOT BE USED TO PREDICT LONG-TERM GLASS DISSOLUTION RATES
- MECHANISTIC MODELS
 - COMBINE SOLUBILITY LIMITS AND MODIFIED HYDRATION THEORY TO MAKE LONG-TERM DISSOLUTION RATE PREDICTIONS POSSIBLE BUT NEED RESULTS FROM EXPERIMENTS THAT QUANTIFY MODEL PARAMETERS (SUCH AS RATE, CONSTANT, AFFINITY TERM, ETC.)

MECHANISTIC MODELING APPROACH

- IDENTIFY CHEMICAL PROCESSES OF GLASS
 DISSOLUTION
- PERFORM EXPERIMENTS THAT ISOLATE AND QUANTIFY THESE PROCESSES
- GENERATE MODEL OF GLASS DISSOLUTION
- VALIDATE MODEL WITH SITE-SPECIFIC EXPERIMENTS AND NATURAL ANALOGUES

POTENTIAL RATE-LIMITING PROCESSES

- ION EXCHANGE
- NETWORK HYDROLYSIS (BREAKING OF Si-O BONDS)
 - DIFFUSION OF IONS OR WATER THROUGH GLASS OR ALTERATION LAYERS
 - CHEMICAL TRANSPORT THROUGH FLUIDS
 IN ALTERATION LAYERS

RATE LAW USED TO MODEL DISSOLUTION KINETICS

• RATE LAW

$$\frac{dc_i}{dt} = \frac{S}{V} v k_r (a_H +)^{\eta} (1 - \frac{Q}{K})$$

- S/V SURFACE AREA OVER VOLUME
- *Q* **ACTIVITY PRODUCT FOR DISSOLUTION REACTION**
- v STOICHIOMETRIC FACTOR
- **k**, **RATE CONSTANT**
- **K** EQUILIBRIUM CONSTANT FOR DISSOLUTION REACTION
- η ORDER OF pH DEPENDENCE
- EXPERIMENTS MUST PROVIDE k_r, K, AND η

WHAT IS EQ3/6?

- SET OF COMPUTER PROGRAMS AND THERMODYNAMIC DATABASE TO SIMULATE FLUID-SOLID INTERACTIONS
- EQ3nr COMPUTES AQUEOUS SPECIATION AND MINERAL/SOLID SATURATION STATES
- EQ6 COMPUTES THE REACTION PATH OF A FLUID-SOLID SYSTEM

APPLIED TO GLASS DISSOLUTION: USER INPUT →GLASS AND FLUID COMPOSITIONS AND RATE CONSTANT CODE OUTPUT →GLASS DISSOLUTION RATE →TYPES AND AMOUNTS OF SECONDARY PHASES →SOLUTION COMPOSITION AS A FUNCTION OF TIME

COMPARISON OF EXPERIMENTAL RESULTS WITH MODEL SIMULATION

COMPARISON OF EXPERIMENTAL RESULTS WITH MODEL SIMULATION

MODEL DEVELOPMENT: CURRENT NEEDS

- EXPERIMENTS THAT ISOLATE THE PROCESSES TAKING PLACE DURING GLASS DISSOLUTION, THE RESULTS OF WHICH CAN BE USED TO QUANTIFY THE MODEL
 - FLOW-THROUGH TESTS WHICH PROVIDE pH DEPENDENCE OF RATE CONSTANT
 - FLOW-THROUGH TESTS WITH DOPED BUFFER SOLUTIONS THAT PROVIDE FORM OF AFFINITY TERM
 - CLOSED-SYSTEM TESTS DOPED WITH SECONDARY PHASES THAT WILL TEST MODEL-PREDICTED DEPENDENCE OF DISSOLUTION RATE ON SOLUTION COMPOSITION
 - CLOSED-SYSTEM AND FLOW-THROUGH TESTS IN D₂O THAT PROVIDE KEY INFORMATION ON RATE-LIMITING STEP

MODEL DEVELOPMENT: CURRENT NEEDS

(CONTINUED)

• EXPERIMENTS IN SIMPLE SYSTEMS THAT CAN BE USED TO VALIDATE MODEL

- CLOSED-SYSTEM TESTS ON SIMPLE ANALOGUE GLASSES IN SIMPLE SOLUTIONS WITH COMPLETE CHARACTERIZATION OF RESULTS (SOLUTION COMPOSITION, SECONDARY PHASES, AND COMPOSITIONS OF ALTERATION LAYERS THROUGH TIME)
- EXPERIMENTS ON A RANGE OF GLASS COMPOSITIONS TO ESTABLISH COMPOSITIONAL EFFECTS ON GLASS DISSOLUTION RATE

MODEL DEVELOPMENT: FUTURE NEEDS

• WHAT HAPPENS TO THE ACTINIDES

- INCORPORATED INTO SECONDARY PHASES
- PRECIPITATE AS SEPARATE PHASES
- ADSORBED ONTO SURFACES
- REMAIN SOLUBLE AS DISSOLVED OR COLLOIDAL SPECIES
- APPLY MODEL TO UNSATURATED CONDITIONS
- INCORPORATE SURFACE CHEMISTRY INTO MODEL

SUMMARY

- AFFINITY (NETWORK HYDROLYSIS) MODEL HAS BEEN COUPLED TO EQ3/6
- MODEL HAS BEEN SHOWN TO PROVIDE GOOD
 AGREEMENT WITH CLOSED-SYSTEM TEST RESULTS
- EXPERIMENTS WHICH ISOLATE AND QUANTIFY GLASS DISSOLUTION PROCESSES ARE NEEDED FOR FURTHER MODEL DEVELOPMENT
- IMPROVEMENTS ARE NEEDED IN ORDER TO BETTER ACCOUNT FOR THE DEPENDENCE OF THE DISSOLUTION RATE ON GLASS COMPOSITION AND GLASS SURFACE CHEMISTRY