



## WHY USE GEOCHEMICAL MODELING?

 NUCLEAR WASTE REPOSITORY PERFORMANCE MUST BE EVALUATED OVER TIME PERIODS AS GREAT AS 10,000 YEARS IN RESPONSE TO CHANGES IN TEMPERATURE, FLUID FLOW AND OTHER CONDITIONS

#### • EXPERIMENTAL LIMITATIONS

- LABORATORY TIME SCALE
- NUMBER OF VARIABLES AND THEIR COMBINATIONS
- EXTRAPOLATION TO MULTIPLE REPOSITORY SCENARIOS



## EXPERIMENTS AND GEOCHEMICAL MODELING: A POWERFUL COMBINATION

- DEVELOPMENT OF QUANTITATIVE, PROCESS-ORIENTED MODELS OF REPOSITORY RESPONSE
- SIMULATION OF THE COMPLEX INTERPLAY AMONG PROCESSES THAT CONTROL RATES OF WASTE FORM DEGRADATION
- PREDICTION OF CHANGES IN THE CHEMICAL ENVIRONMENT THROUGHOUT THE POST-CLOSURE PERIOD

## EQ3/6 SOFTWARE PACKAGE FOR GEOCHEMICAL MODELING

- EQ3 AQUEOUS SPECIES DISTRIBUTION
- EQ6 DYNAMIC SIMULATION OF INTERACTIONS AMONG HOST ROCKS, REPOSITORY COMPONENTS, AND FLUIDS
- THERMODYNAMIC DATA BASES SOLIDS, GASES, INORGANIC AND ORGANIC AQUEOUS SPECIES



# SPENT FUEL WASTE FORM / J-13 WATER-SIMULATION RESULTS



### -

### **MINERAL NAMES AND FORMULAS**

| dolomite           | $CaMg(CO_3)_2$                                                                                    | hematite  | Fe <sub>2</sub> O <sub>3</sub>                               |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------|--|--|--|
| quartz             | SiO <sub>2</sub>                                                                                  | mesolite  | $Na_{0.68}Ca_{0.66}Al_{1.99}Si_{3.01}O_{10} \cdot 2.647H_2O$ |  |  |  |
| thorianite         | ThO <sub>2</sub>                                                                                  | gibbsite  | Al(OH) <sub>3</sub>                                          |  |  |  |
| carbonate-calcite  | *(Ca,Mg,Fe,Sr)CO <sub>3</sub>                                                                     | trevorite | NiFe <sub>2</sub> O <sub>4</sub>                             |  |  |  |
| haiweeite          | $Ca(UO_2)_2Si_6O_{15}$ , $5H_2O$                                                                  | schoepite | UO <sub>3</sub> •2H <sub>2</sub> O                           |  |  |  |
| cassiterite        | SnO <sub>2</sub>                                                                                  | bunsenite | NiO                                                          |  |  |  |
| soddyite           | $(UO_2)_2SiO_4 \cdot 2H_2O$                                                                       |           |                                                              |  |  |  |
| clinoptilolite-ss* | $(Na,K,Cs,Ca_{0.5}Sr_{0.5}Ba_{0.5})_{3.467}Al_{3.45}Fe_{0.017}Si_{14.533}O_{36} \cdot 10.922H_2O$ |           |                                                              |  |  |  |
| smectite-di*,**    | $(Na,K,Ca_{0.5},Mg_{0.5})_{0.33}(Al,Mg,Fe)_2(Si,Al)_4O_{10}(OH)_2$                                |           |                                                              |  |  |  |

\* denotes solid solution

\*\* di = dioctahedral



## SPENT FUEL 25°C





## SPENT FUEL 25°C



#### Np / LEMIRE (1984) GROUNDWATER #1-25°C



9

## Pu CONCENTRATION / J-13 WATER - 25°C





SPFGEO5P.A36/8-28/29-90 11

## CHEMICAL COMPOSITION (mg/l)

|                  | Extracted    |                |  |
|------------------|--------------|----------------|--|
|                  | J-13*        | pore water**   |  |
| Li               | 0.04 - 0.17  |                |  |
| Na               | 42 - 50      | 26 - 65        |  |
| K                | 3.7 - 6.6    | 5 - 15         |  |
| Mg               | 1.7 - 2.5    | 5 - 21         |  |
| Ca               | 11.5 - 15    | 27 - 127       |  |
| Sr               | 0.02 - 0.1   | 0.55 - 1.5     |  |
| Fe               | <0.01 - 0.16 | <0.003 - 0.118 |  |
| Al               | 0.008 - 0.11 |                |  |
| Si               | 26.6 - 31.9  | 72 - 100       |  |
| NO <sub>3</sub>  | 6.8 - 10.1   |                |  |
| F                | 1.7 - 2.7    |                |  |
| CI               | 6.3 - 8.4    | 34 - 105       |  |
| HCO <sub>3</sub> | 118 - 143    |                |  |
| SO <sub>4</sub>  | 17 - 21      | 37 - 174       |  |
| pН               | 6.8 - 8.3    |                |  |

- \* Tables 4.1 and 4.2, Harrar et al., 1988.
- \*\* Triaxial compression extractions from nonwelded unit of unsaturated Paintbrush tuff, Yucca Mt., Yang et al., 1988.

## INTERACTIONS THAT COULD ALTER WATER CHEMISTRY

.

| Water interaction with:               | Effect on pH? | Effect on Eh? | Effect on major/minor components of water? |
|---------------------------------------|---------------|---------------|--------------------------------------------|
| Host rock (under study)               | Yes           | Yes           | Ppt, sorption                              |
| Metal corrosion                       | Yes           | Decrease      | Ppt, sorption                              |
| Cement                                | Increase      | Yes           | Ppt, sorption                              |
| Organics                              | Organic acids | Yes           | Ppt, sorption,<br>complex fm               |
| Partial liner, man-made<br>components | Yes           | Yes           | Ppt, sorption                              |
| Radiation field                       | Decrease      | Increase      | Ppt, sorption                              |

## IMPACT OF WATER CHEMISTRY ON URANIUM CONCENTRATIONS IN SOLUTIONS





## CONCLUSIONS

• ACTINIDE CONCENTRATIONS IN SOLUTION CAN VARY SIGNIFICANTLY WITH CHANGES IN Eh, pH, SOLUTION COMPOSITION, AND THE NATURE OF THE ACTINIDE-BEARING PRECIPITATE

|    | Ca | Si | HCO <sub>3</sub> | рН | Eh |
|----|----|----|------------------|----|----|
| U  | X  | Х  | X                | Х  | X  |
| Np | 0  | 0  | 0                | Х  | X  |
| Pu | 0  | 0  | 0                | Х  | X  |
| Am | 0  | 0  | X                | Х  | X  |

X = significant impact O = little impact

• SOLUTION CHEMISTRY MUST CHANGE BY ORDERS OF MAGNITUDE TO IMPACT ACTINIDE BEHAVIOR



## CONCLUSIONS

(CONTINUED)

- OBSERVED VARIATIONS IN THE CHEMISTRY OF J-13 WATER AND EXTRACTED PORE WATERS FROM THE UNSATURATED ZONE DO NOT SEEM LARGE ENOUGH TO AFFECT ACTINIDE CONCENTRATIONS
- INTERACTIONS AMONG THE WASTE FORM, REPOSITORY COMPONENTS AND HOST ROCK CAN RESULT IN ORDER-OF-MAGNITUDE CHANGES IN SOLUTION CHEMISTRY. SUCH INTERACTIONS MUST BE CONSIDERED IN ORDER TO PREDICT RADIONUCLIDE CONCENTRATIONS THROUGH TIME