

U.S. DEPARTMENT OF ENERGY CIVILIAN RADIOACTIVE WASTE MANAGEMENT
PRESENTATION TO R WASTE TECHNICAL REVIEW BOARD
SPENT FUEL LEACHING: FLOW-THROUGH TESTS
HERMAN R. LEIDER
PHYSICAL CHEMIST LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CALIFORNIA

•

٠

WHY STUDY UO₂?

MEASUREMENTS ON UO, DISSOLUTION ARE IMPORTANT TO MODELING FOR SEVERAL REASONS

- MATRIX DISSOLUTION CAN BE DEFINED
- COMPARISON WITH DISSOLUTION BEHAVIOR OF SPENT FUEL (SF) WILL PROVIDE INFORMATION ABOUT
 - THE CHEMICAL EFFECTS OF FISSION PRODUCTS (FPs) (SEVERAL %) ON THE MATRIX BEHAVIOR
 - THE CHEMICAL EFFECTS OF HIGH RADIATION LEVELS
 - GRAIN BOUNDARY DISSOLUTION OF SOME FPs

DO WE NEED MORE EXPERIMENTS?

YES

AVAILABLE DATA, ALTHOUGH AMPLE, ARE HIGHLY NON-REPRODUCIBLE, AND, IN ANY EVENT, ARE NOT EASY TO APPLY TO OUR NEEDS

PUBLISHED DISSOLUTION RATES*

*BERND GRAMBOW, SKB TECHNICAL REPORT 89-13, MARCH, 1989

THE SOLUBILITIES OF THE OXIDES AND HYDROXIDES ARE ALSO UNCERTAIN*

* I. PUIGDOMENECH AND J. BRUNO, SKB TECHNICAL REPORT 88-21, OCTOBER, 1988

STATIC TESTS HAVE LIMITATIONS

- SATURATED STATIC, OR SEMI-STATIC DISSOLUTION TEST CAN GIVE INFORMATION ON DISSOLUTION RATE ONLY FOR VERY SOLUBLE SPECIES, LIKE Cs
- FOR ALL SPECIES WITH LIMITED SOLUBILITY (MOST), SATURATED STATIC TESTS WILL ONLY GIVE INFORMATION ON THE CONCENTRATION OF THE SATURATED SOLUTION

UNDERSATURATED FLOW-THROUGH TESTS COMPLEMENT STATIC TESTS

- UNDERSATURATED FLOW-THROUGH TESTS PRODUCE CONCENTRATIONS THAT CAN BE MEASURED BY ACCEPTED TECHNIQUES
- THIS IS TRUE FOR U AND Cs, AND HOPEFULLY, Sr. OTHER SPECIES WILL HAVE TO BE EXAMINED, AS WELL

UNDERSATURATED FLOW-THROUGH TESTS

- IN THESE TESTS, THE CONCENTRATION OF SOLUTES IS KEPT FAR BELOW THE LEVELS THAT WOULD RESULT IN PRECIPITATION OF SECONDARY PHASES
- THE EXPERIMENTAL PHILOSOPHY AND FLOW-THROUGH APPARATUS IS ESSENTIALLY THE SAME AS THAT FOR THE ON-GOING GLASS DISSOLUTION STUDIES
- CONCENTRATION WILL (PROBABLY) BE INVERSELY PROPORTIONAL TO FLOW RATE. THE SLOPE OF SUCH A PLOT IS THE RATE OF DISSOLUTION
- SOLUBILITY IS MEASURED DIRECTLY AT THE POINT WHERE CONCENTRATION BECOMES INDEPENDENT OF FLOW RATE
- DISCONTINUOUS CHANGES IN DISSOLUTION RATE IN THE UNDERSATURATED REGIME INDICATE A CHANGE IN MECHANISM

URANIUM CONCENTRATION VS. RECIPROCAL FLOW

Dashed lines are least squares linear fit to the data Linear relationship indicates undersaturated conditions Test temperature 25 C

*C. WILSON & W. GRAY, PNL

WE WILL USE SIMPLIFIED SOLUTIONS

IN SIMPLIFIED EXPERIMENTS, ONLY [H⁺], [HCO₃⁻] AND [O₂] WILL BE PRESENT. THE SOLUBILITY-LIMITING PHASE WILL BE SCHOEPITE, $UO_3 \cdot 2 H_2O$

UNDER REPOSITORY-LIKE CONDITIONS, OTHER SOLUBILITY-LIMITING PHASES WILL BE PRESENT AND WOULD COMPLICATE INTERPRETATION OF THE CHEMISTRY

THESE WILL INCLUDE:

URANOPHANE $Ca(UO_2)_2 (SiO_3OH)_2 5 H_2O$

HAIWEEITE $Ca(UO_2)_2 Si_6O_{15} 5 H_2O$

SODDYITE $(UO_2)_2 SiO_4 2 H_2O$

FISSION PRODUCT (FP) DISSOLUTION ARISES FROM THREE SOURCES IN SPENT FUEL (SF)

- <u>THE GAP.</u> RELEASED VOLATILES, SUCH AS Cs, I, ETC., FOUND ON SF SURFACES AND CLADDING. IMMEDIATELY AVAILABLE
- <u>GRAIN BOUNDARIES (GB)</u>. THIS WILL CONSIST OF VOLATILES AND OTHER RADIONUCLIDES THAT ARE INSOLUBLE IN THE MATRIX. MAY OR MAY NOT COINCIDE WITH MATRIX DISSOLUTION
- <u>THE MATRIX</u>. CONGRUENT WITH UO₂ DISSOLUTION. ALL RADIONUCLIDES DISSOLVED OR FINELY DISPERSED IN THE MATRIX. THIS IS THE BULK OF THE FPs AND ACTINIDES

A SCHEMATIC VIEW OF SF DISSOLUTION*

*L.H. JOHNSON AND D.W. SHOESMITH, "RADIOACTIVE WASTE FORMS FOR THE FUTURE," W. LUTZE AND R.C. EWING, EDS., ELSEVIER (1988) P. 686 SPFFLW5P.A36/7-28-90 11

SOLID DISSOLUTION OF NON-DISSOCIATING SOLIDS

THE SIMPLEST MODEL IS BASED ON KINETIC THEORY

RATE = KDS ($C_{sat} - C(t)$)

- K = PROPORTIONALITY CONSTANT
- D = DIFFUSION COEFFICIENT IN SOLUTION
- S = SURFACE AREA OF SOLID
- C_{sat} = SATURATED SOLUTION CONCENTRATION
- C (t) = INSTANTANEOUS SOLUTION CONCENTRATION

THE GENERAL VALIDITY OF THIS MODEL HAS BEEN AMPLY CONFIRMED. HOWEVER, SF AND UO₂ DISSOLUTION INVOLVES IONIC MATERIAL

CONSIDER THE (OVERLY) SIMPLE EQUATION

$$UO_{2(S)} + 2 H_{2}O_{(aq)}$$
 $U^{+4}_{(aq)} + 4 OH^{-}_{(aq)}$

IN THIS CASE SOLUBILITY AND DISSOLUTION RATE WILL BE STRONGLY AFFECTED BY pH. THE EQUATION INDICATES A 4th POWER DEPENDENCE ON [OH-] AND THEREFORE ON [H+]

*L.H. JOHNSON AND D.W. SHOESMITH, "RADIOACTIVE WASTE FORMS FOR THE FUTURE," W. LUTZE AND R.C. EWING, EDS., ELSEVIER (1988) P. 670

REACTIONS OF UO, IN OXIDATION AND DISSOLUTION

THERE ARE SEVERAL POSSIBLE RATE-DETERMINING PROCESSES IN SF AND UO, DISSOLUTION. (WE WILL REGARD PARTIALLY OXIDIZED UO, AS CONSISTING OF $U^{VV} + U^{VI}$). REPOSITORY CONDITIONS WILL BE OXIC.

$\begin{array}{c} \textbf{REACTIONS OF UO}_2 \text{ IN} \\ \textbf{OXIDATION AND DISSOLUTION} \end{array}$

(CONTINUED)

REACTION		DEPENDENCE		
UO _{2(s)} + xO _{2(ads)}	UO _{2 + x(s)}	P (O ₂) ^{1/2}		
$UO_{2(s)} + xO_{(s)}$	UO _{2 + x(s)}	$D(O) = K_2 \exp(-H2/RT)$		
$UO_{3(s)} + H_2O_{(aq)}$	UO _{2 (aq)} 20H ⁻¹ (aq)	[H+] ²		
UO _{3(s)} + 2 HCO ⁻¹ _{3(aq)}	$UO_{2}(CO_{3})_{2(aq)}^{-2}H_{2}O_{(aq)}$	[HCO ₃ ⁻] ²		
UO _{2(aq)} + 2 HCO _{3(aq)} -1	$UO_{2}(CO_{3})_{2(aq)}^{-2} 2H_{(aq)}^{+1}$	[HCO ₃ ⁻] ² , [H ⁺] ⁻²		

WE WILL USE A STATISTICAL APPROACH

WE HAVE USED "R/S DISCOVER", A COMMERCIAL COMPUTER PROGRAM, TO GENERATE AN EFFICIENT STATISTICAL EXPERIMENTAL DESIGN

- DETERMINATE OPTIMAL
- QUADRATIC MODEL
- 15 TESTS PLUS 4 DUPLICATIONS

TEST MATRIX FOR THE UO₂ DISSOLUTION TESTS

		-log	-log	
	TEMPERATURE	(Pco ₂ ,	(Po ₂ ,	
NO.	(°C)	atm	atm)	рН
1	50	2.5	1.7	9
2	50	2.5	1.7	9
3	50	2.5	1.7	9
4	25	1.5	0.7	8
5	75	1.5	0.7	10
6	75	3.5	0.7	8
7	25	3.5	0.7	10
8	25	1.5	2.7	8
9	75	1.5	2.7	10
10	75	3.5	2.7	8
11	25	3.5	2.7	10
12	25	3.5	1.7	8
13	75	3.5	1.7	10
14	25	1.5	1.7	10
15	75	1.5	1.7	8
16	50	1.5	2.7	10
17	25	1.5	0.7	9
18	25	2.5	0.7	10
19	25	2.5	2.7	9

SF DISSOLUTION TESTS

- IDEALLY, SF FLOW-THROUGH DISSOLUTION TESTS WOULD USE THE SAME EXPERIMENTAL DESIGN. THIS WILL BE DONE WITHIN THE CONSTRAINTS ASSOCIATED WITH HOT CELL WORK
- SF TESTS WILL COVER A PART OF THE EXPERIMENTAL MATRIX SO AS TO DUPLICATE AS MANY OF THE UO, TESTS AS IS FEASIBLE
- SUCH PARTIAL MATRICES WILL ULTIMATELY BE USED TO EXAMINE SFs THAT REPRESENT THE FULL RANGE OF BURNUP AND OF FISSION GAS RELEASE

NOVEL TECHNIQUES FOR MEASURING DISSOLUTION

- SPECTRO-ELECTROCHEMISTRY USING OPTICAL PROBE BEAM DEFLECTION SPECTROSCOPY (R.E. RUSSO, LBL)
- SCANNING ATOMIC SCALE MICROSCOPY (W. SIEKHAUS AND M. BALOOCH, LLNL)

EXISTING SCANNING MICROSCOPY INSTRUMENTATION

• FOR ELECTRICALLY CONDUCTING SAMPLES

- SCANNING TUNNELING MICROSCOPE OPERATING IN AIR OR WATER
- ELECTROCHEMICAL SCANNING TUNNELING MICROSCOPE OPERATING IN ELECTROLYTES WITH POTENTIAL APPLIED
- SCANNING TUNNELING MICROSCOPE OPERATING IN ULTRA HIGH VACUUM

• FOR ELECTRICALLY INSULATING SAMPLES

- ATOMIC FORCE MICROSCOPE OPERATING IN AIR, WATER, OR OTHER FLUIDS

SUMMARY

- THE EXPERIMENTAL SYSTEM HAS BEEN THOROUGHLY TESTED AND FOUND TO BE SATISFACTORY
- SUITABLE DISSOLUTION SAMPLES ARE IN HAND. VERIFICATION OF THEIR PROPERTIES IS UNDERWAY
- START OF ACTUAL DISSOLUTION MEASUREMENT IS IMMINENT