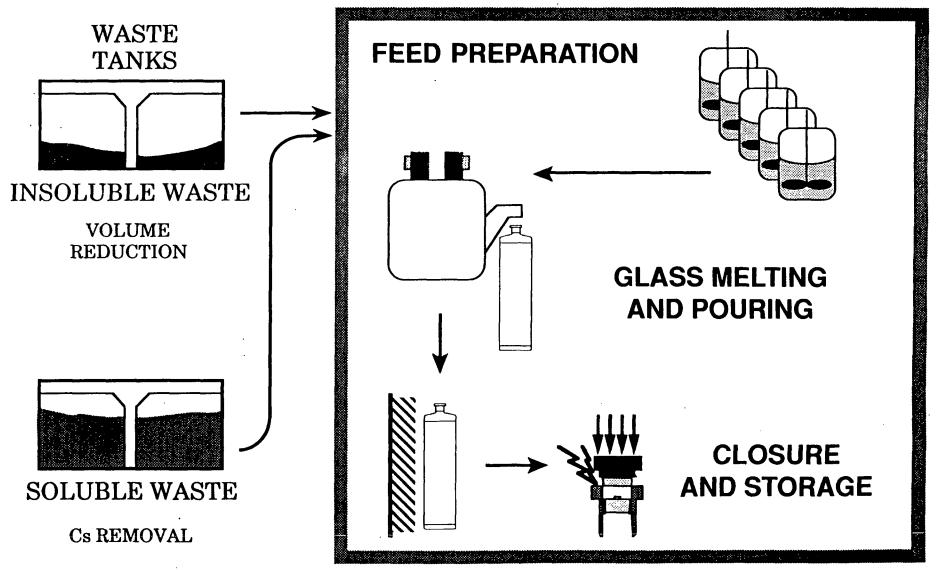


BACKGROUND

- GLASS SELECTED AS WASTE FORM FOR DEFENSE WASTE PROCESSING FACILITY (DWPF) - 1982
 - GLASS PROCESSING IS WELL-KNOWN AND SAFE
 - GLASS IS STABLE TO RADIATION
 - GLASS IS DURABLE AND RUGGED
 - EPA: "FACILITY BADLY NEEDED ... ENVIRONMENTALLY BENEFICIAL ACTION [LETTER, CAHILL (EPA) to HINDMAN (DOE), dtd 12/3/81]"
 - NRC:"GLASS COULD BE AN ACCEPTABLE WASTE FORM IN A SUITABLY ENGINEERED BARRIER SYSTEM;" URGED SITE-SPECIFIC TESTING [LETTER, MARTIN (NRC) to HINDMAN (DOE), dtd 11/4/82]"
 - SUBSEQUENT WORK SHOWING THAT EBS CONTAINING DWPF GLASS CAN MEET REGULATORY REQUIREMENTS *

* See N.E. Bibler, G. G. Wicks and V. O. Oversby, "Leaching of SRP Nuclear Waste Glass in a Saturated Tuff Environment," Scientific Basis for Nuclear Waste Management, VIII, C. M. Jantzen, J. A. Stone and R. C. Ewing (eds.), 247-56 (1985); and


M. J. Apted and D. W. Engel, "Mass-Transfer Analysis of Waste Packages Containing Defense Waste Processing Facility Glass as a Waste Form," **High-Level Radioactive Waste Management**, Proceedings of the International Topical Meeting, D. B. Shipler (ed.), 388-93 (1990).

- DOE-OCRWM HAS SET SPECIFICATIONS FOR ACCEPTANCE OF THE DWPF PRODUCT
- DWPF WORKING TO ESTABLISH COMPLIANCE THROUGH COMBINATION OF
 - COMPONENT SPECIFICATIONS
 - PRODUCT CONTROL

DWPF PROCESS

DEFENSE WASTE PROCESSING FACILITY

DWPF PRODUCT

MATERIALS OF CONSTRUCTION:	AUSTENITIC STAINLESS STEEL (304L)
CANISTER WEIGHT (EMPTY):	450 kg
WEIGHT OF GLASS:	1700 kg (3700 lb)
LENGTH:	300 cm (9 ft 10 in)
DIAMETER:	61 cm (24 in)
WALL THICKNESS:	1.0 cm ⁻
AVERAGE FILL HEIGHT:	231 cm
MAXIMUM ACTIVITY:	230 kCi
MAXIMUM RADIATION DOSE:	5500 R/hr
MAXIMUM DECAY HEAT:	670 watts
AVERAGE GLASS DENSITY:	2.73 g/cm³
AVERAGE TIME OF FILLING:	17 hr
MODE OF FILLING:	CONTINUOUS, DIFFERENTIAL PRESSURE METHOD

PROJECTED DWPF WASTE GLASS COMPOSITIONS

MAJOR GLASS COMPONENTS	CONSTITUENT SLUDGE TYPE							
weight %	Blend ^d	Batch 1	Batch 2	Batch 3	Batch 4	HM	Purex ^w	
Al ₂ 0 ₃	3.98	4.87	4.46	3.25	3.32	7.08	2.89	1
B ₂ O ₃	8.01	7.69	7.70	7.69	8.11	6.94	10.21	
BaSO4	0.27	0.22	0.24	0.26	0.38	0.18	0.29	^a Group A: semi-volatile radionuclides (Se, Te, Rb, Mo, Tc)
CaO	0.97	1.17	1.00	0.93	0.83	1.00	1.02	
CaSO ₄	0.077	0.12	0.11	0.10	0.0034	trace	0.12	
Cr ₂ 0 ₃	0.12	0.10	0.12	0.13	0.14	0.086	0.14	
CuO	0.44	0.40	0.41	0.40	0.46	0.25	0.42	^b Group B: nonvolatile radionuclides (e.g., Sm, Sn, Co, Np, Am, Cm)
Fe ₂ 0 ₃	10.41	12.52	10.61	11.16	11.32	7.38	12.74	
Group A ^a	0.14	0.099	0.14	0.10	0.20	0.20	0.078	
Group B ^b	0.36	0.22	0.44	0.25	0.60	0.89	0.084	
к ₂ 0	3.86	3.49	3.50	3.47	3.99	2.14	3.58	^d The "Blend" is the current DWPF design-basis glass
Li ₂ O	4.40	4.42	4.42	4.42	4.32	4.62	3.12	
MgO	1.35	1.36	1.35	1.35	1.38	1.45	1.33	
MnO	2.03	2.06	1.62	1.81	3.08	2.07	1.99	^w The "Purex" glass is a possible "worst-case" composition
Na ₂ 0	8.73	8.62	8.61	8.51	8.88	8.17	12.14	
Na2SO4	0.10	0.10	0.12	0.096	0.13	0.14	0.12	
NaC1	0.19	0.31	0.23	0.22	0.090	0.093	0.26	
NiO	0.89	0.75	0.90	1.07	1.09	0.40	1.21	
SiO ₂	50.20	49.81	50.17	49.98	49.29	54.39	44.56	
тъ02	0.19	0.36	0.63	0.77	0.24	0.55	0.011	
TiO ₂	0.90	0.66	0.67	0.66	1.02	0.55	0.65	
U ₃ 0 ₈	2.14	0.53	2.30	3.16	0.79	1.01	2.89	
Total	99.76	99.88	99.75	99.79	99.66	99.59	99.85	

STATUS OF DWPF QUALIFICATION ACTIVITIES

- WASTE FORM COMPLIANCE PLAN (WCP) REVIEWED BY TECHNICAL REVIEW GROUP (TRG), SENT TO NRC
- WASTE FORM QUALIFICATION REPORT (WQR)
 - 16 INITIAL SECTIONS DRAFTED (OUT 0F 24) PROJECTIONS OF RADIONUCLIDES, HEAT, DOSE; CANISTER-RELATED SPECIFICATIONS; FOREIGN MATERIALS
 - 8 REVIEWED BY TRG, AND COMMENTS RESOLVED
 - 5 ISSUED, WILL BE SENT TO NRC FOR INFORMATION
- FORMALIZED STARTUP TEST PROGRAM IN PLACE
 - QUALIFY TECHNOLOGY DEVELOPED BEFORE WASTE ACCEPTANCE PROCESS
 - DEMONSTRATE ABILITY TO CONTROL PRODUCT
 - PROGRAM DRIVEN BY SPECIFICATION ON RADIONUCLIDE RELEASE
- HAVE DEVELOPED TEST METHOD FOR RADIOACTIVE SAMPLES [PRODUCT CONSISTENCY TEST (PCT)], PROCEEDING THROUGH ASTM

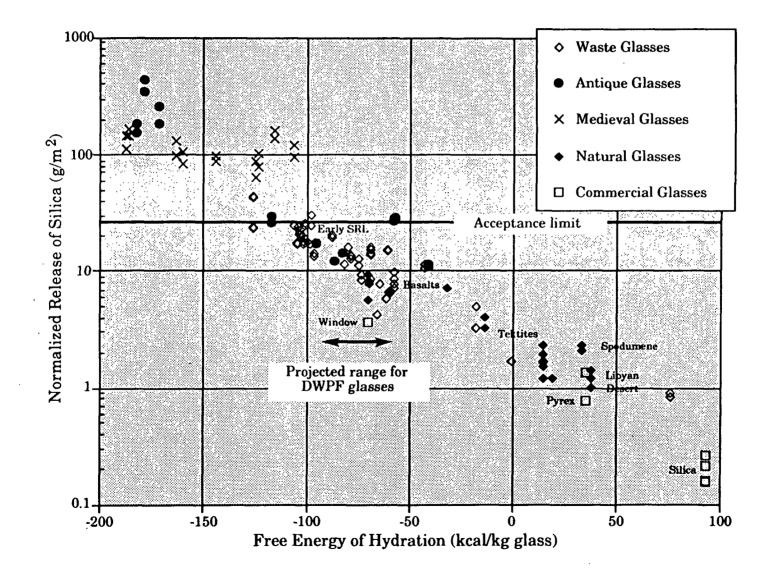
CONTROL AND VERIFICATION OF RADIONUCLIDE RELEASE

- CONTROL PROCESS SO THAT GLASS ABLE TO LIMIT RELEASE TO < 1 g/m² •d (28 g/m² for 28 d) ON MCC-1 LEACH TEST
- DURING PRODUCTION, VERIFY TO 95% CONFIDENCE LEVEL THAT 95% OF PRODUCT WOULD BE ABLE TO MEET LIMIT
- ANY MEANS (DIRECT OR INDIRECT) ACCEPTABLE, AS LONG AS RELATED TO SPECIFIED METHODS

IMPORTANCE OF GLASS COMPOSITION

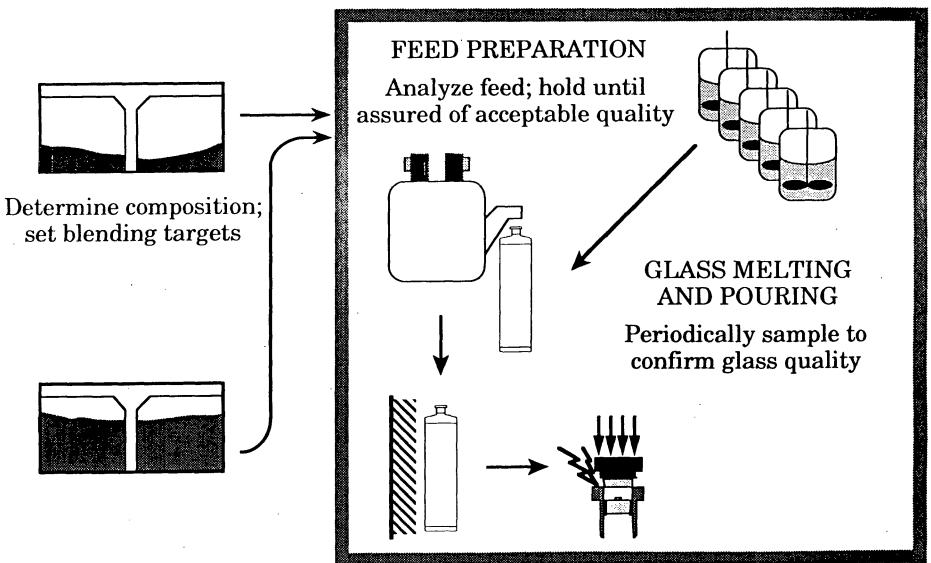
• PERFORMANCE OF GLASS IN MCC-1 TEST DEPENDS ON

- GLASS COMPOSITION
- WATER COMPOSITION, Eh, pH
- **TEMPERATURE OF INTERACTION**
- FLOW RATE
- RATIO OF GLASS SURFACE AREA TO SOLUTION VOLUME (SA/V)
- TIME OF CONTACT BETWEEN GLASS AND WATER
- THE MCC-1 TEST FIXES WATER COMPOSITION (DIW), TEMPERATURE (90°C), FLOW RATE (STATIC), SA/V (10 m⁻¹), AND TIME (28 DAYS)
- THEREFORE, THE DWPF MUST CONTROL THE COMPOSITION OF THE GLASS TO MEET SPECIFICATION

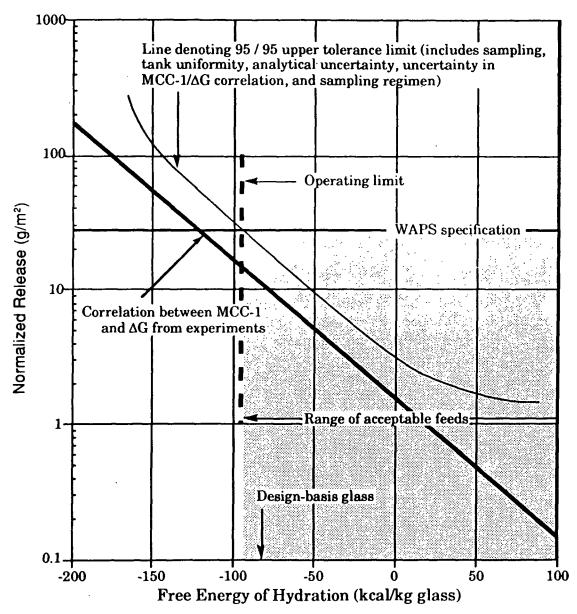

HYDRATION THERMODYNAMICS APPROACH

- ASSUMES GLASS IS A MECHANICAL MIXTURE OF COMPONENTS (SiO₂, B₂O₃, etc.)
- EACH COMPONENT HAS WELL-DEFINED FREE ENERGY OF REACTION WITH WATER
- FREE ENERGY OF HYDRATION OF GLASS = SUM OF THE FREE ENERGIES OF HYDRATION OF INDIVIDUAL COMPONENTS WEIGHTED BY CONCENTRATION OF COMPONENT IN GLASS

$$\Delta \mathbf{G}_{\text{HYDRATION}}^{\circ} = \sum_{i} \Delta \mathbf{G}_{i,\text{HYDRATION}}^{\circ} \bullet \mathbf{m}_{i}$$


 ΔG° in kcal/kg glass; ΔG°_{i} in kcal/mol; m in mol/kg glass

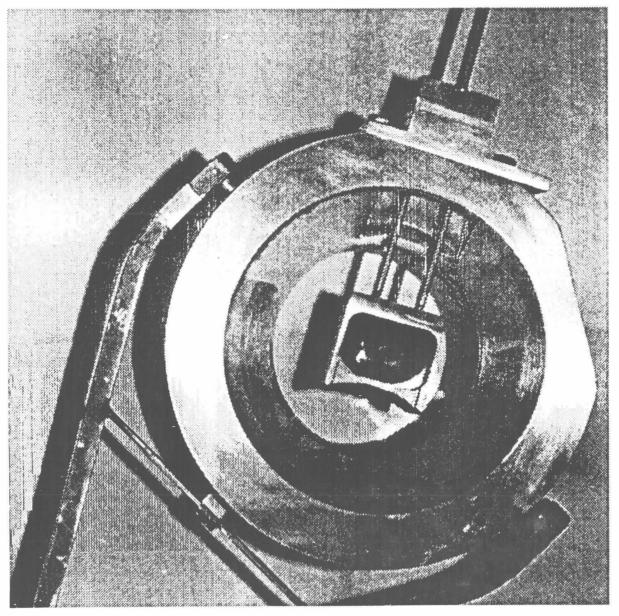
MCC-1 TESTS (28 d, 90°C)



CONTROL OF DWPF GLASS QUALITY

DEFENSE WASTE PROCESSING FACILITY

OPERATING LIMIT BASED ON FREE ENERGY


HLWDWP5P.A35/8-28/29-90 12

ROLE OF INTEGRATED COLD RUNS

- DWPF PREPARING DETAILED TEST PLANS TO DEMONSTRATE ABILITY TO CONTROL GLASS QUALITY
- WILL USE RESULTS TO VERIFY ABILITY TO CONTROL OVER MOST ADVERSE CREDIBLE CONDITIONS
 - FIRST, VERIFY FOR SMALL CHANGES IN MELTER FEED
 - THEN, STEP CHANGE IN VISCOSITY (LOW), DENSITY (HIGH)
 - NEXT, STEP CHANGE IN VISCOSITY (HIGH), DENSITY (LOW)
 - FINALLY, BACK TO BASELINE CONDITIONS IN PREPARATION FOR FIRST BATCH
- EACH OF 124 CANISTERS WILL BE SAMPLED, MOST DESTRUCTIVELY EXAMINED AS WELL
 - COMPARE GLASS SAMPLE TO CANISTER CONTENTS
 - COMPARE OBSERVED PERFORMANCE TO PREDICTION FROM COMPOSITION

DWPF GLASS SAMPLER

DWPF PRODUCT CONSISTENCY TEST (7 d, 90°C)

- MCC-1 TEST NOT WELL-SUITED TO HOT CELL OPERATIONS **BECAUSE IT IS COMPLEX, REQUIRES MONOLITHS AND TEFLON**[®]**VESSELS**
- HAVE DEVELOPED A PCT WHICH IS SIMPLER, COMPATIBLE WITH PRODUCTION SAMPLES, AND USES STAINLESS STEEL
- TEST CONDITIONS (COMPARED TO MCC-1)
 - DEIONIZED WATER, 90°C, STATIC (ALL THE SAME)
 - GRAINS (MONOLITHS)
 - SA/V = 1950 m⁻¹(10 m⁻¹)
 - STANDARD GLASS RÉQUIRED (NO STANDARDS REQUIRED)
 STAINLESS STEEL VESSELS (TEFLON[®] VESSELS)

DWPF PRODUCT CONSISTENCY TEST (7 d, 90°C) (CONTINUED)

- ROUND ROBIN AND RADIOACTIVE SAMPLE EXCHANGES
 INDICATE PRECISION FOUR TIMES BETTER
- ASTM COMMITTEE ACCEPTANCE EXPECTED THIS FALL - THEN SUBMIT TO FULL MEMBERSHIP
- EPA INTERESTED IN USE AS REPLACEMENT FOR TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP)

CONCLUSIONS

- DWPF WILL BEGIN NON-RADIOACTIVE TESTING LATER THIS YEAR
- ALTHOUGH VARIABLE IN COMPOSITION, DWPF
 GLASSES WILL MEET SPECIFICATIONS
- A DETAILED PROGRAM IS BEING IMPLEMENTED TO ENSURE THAT THE DWPF WILL MAKE AN ACCEPTABLE PRODUCT