



### **TOPICS DISCUSSED**

- Properties of spent fuel that influence radionuclide release behavior
- Methods used for testing release behavior of spent fuel in the laboratory
  - Semi-static tests
  - Flow-through tests
- Highlights of laboratory test results

# WHY TEST SPENT FUEL DISSOLUTION BEHAVIOR?

- Spent fuel will likely be the dominant source (compared to glass) of soluble radionuclide (99Tc, 14C, 135Cs, 129I...) release
- Tests with real fuel specimens are required to obtain needed data such as
  - Dissolution rates for soluble radionuclides (initial and continuous)
  - -- Identification of secondary phases controlling solubilities
  - Amounts of radionuclides present as colloids
- Results provide solubility and secondary phase data for validation of geochemical models such as EQ3/6

#### **FACTORS AFFECTING RELEASE**



\* Indicates properties measured in dissolution tests

#### SOLUBLE RADIONUCLIDE RELEASE



Time

- Rapid release of "gap inventories" with initial water contact (days)
- Preferential release from grain boundaries and other sources of radionuclide concentration (years)
- Releases are controlled by matrix dissolution after exposed grain boundaries and other sources of radionuclide concentration become depleted (assuming fuel is not substantially degraded by oxidation)

### **TESTING METHODS**

#### Semi-Static

- Periodic solution samples, sequential test cycles
- Gives data on steady-state actinide concentrations, secondary phases and soluble radionuclide release ("gap" and continuous) rates
- Matrix dissolution rates are not measured
- Three test series conducted during FY-1983 through FY-1987

#### Flow-Through

- Matrix dissolution rates can be measured
- Developmental tests conducted with unirradiated UO<sub>2</sub> during FY-1989 and FY-1990



#### SEMI-STATIC TEST APPARATUS SERIES 3 TEST CONFIGURATIONS



HEDL \$512-122.1

## FLOW-THROUGH TESTING



- OBJECTIVE To measure uranium and soluble nuclide dissolution in a test where all measured species remain in solution
- FLOW RATE Sufficiently high such that all dissolved uranium remains in solution, but low enough so that soluble nuclides reach measurable concentrations (a difficult compromise)

#### SEMI-STATIC TEST IDENTIFICATION FOR FOLLOWING SLIDES



Series 2 -- J-13 water, unsealed glass vessels Series 3 -- J-13 water, sealed stainless steel vessels

### **ACTINIDE RESULTS**

#### Semi-Static Tests - U, Np, Pu, Am, Cm

#### Actinides rapidly reach steady-state concentrations

- Suggests that actinide release will be solubility limited and not depend on particular characteristics of the spent fuel
- However, more data is needed to assess the effects of colloids
- Sample filtration results suggest actinides were present as colloids (particularly Am & Cm in 25°C tests)
- Actinide concentrations tended to be lower at 85°C than at 25°C
  - Kinetic factors appear to favor precipitation of secondary phases over colloid formation at the higher temperature
- Order of temperature and filtration effects: Np < U < Pu < Am & Cm



Pu-239 + 240 ACTIVITY IN 0.4 μm FILTERED SOLUTION SAMPLES



#### Actinide Annual Releases as Fractions of 1000-Year Inventories Based on HBR-3-25 Test Data

| <u>Actinide</u><br>U | <u>Log (M)</u> | <u>Log (Release)</u> |
|----------------------|----------------|----------------------|
|                      | -5.9           | -8.6                 |
| Np                   | -8.9           | -8.8                 |
| Pu                   | -8.4           | -9.0                 |
| Am                   | -9.8           | -9.1                 |

Based on approximate steady-state concentrations measured in 0.4  $\mu\text{m}$  filtered samples during Cycles 2 & 3 of HBR-3-25 test

Calculated annual releases assume water flow rate of 20 L/yr per waste package containing 3140 kg of 33,000 MWd/MTM burnup fuel

#### Concentrations of Low-Solubility Nuclides will be Controlled by Secondary Phases

Uranophane [CaO•2UO<sub>3</sub>•2SiO<sub>2</sub>•6H<sub>2</sub>O] Crystals Formed on Fuel Surface During HBR-3-85 Test



**10** µm

#### SOLUBLE RADIONUCLIDE RELEASES MEASURED IN SEMI-STATIC TESTS\*

- <sup>99</sup>Tc, <sup>137</sup>Cs, <sup>90</sup>Sr and <sup>129</sup>I release rates (inventory fraction per year)
  5 x 10<sup>-5</sup> to 2.5 x 10<sup>-4</sup> at 25°C
  3 x 10<sup>-4</sup> to 1.2 x 10<sup>-3</sup> at 85°C
- <sup>14</sup>C
  - ~ 1% of specimen inventory released in first year
  - Release from fuel (matrix, gap and grain boundaries) was much greater than from cladding exterior
  - Released as CO<sub>2</sub> from unsealed vessels

<sup>\*</sup> Tests with as-irradiated fuel particles with geometric surface area ~2.5 cm<sup>2</sup>/g

#### RADIONUCLIDE ACTIVITIES MEASURED IN SOLUTION DURING THE TP-3-85 TEST



15

#### FRACTION IN SOLUTION

HBR-3-85 Test



Time (Days)

#### FRACTION IN SOLUTION

TP-3-85 Test



Time (Days)

17

### <sup>99</sup>Tc Measured in Solution

Effects of Temperature and Oxidation (O/M)



18



NOTES: Auger microprobe examination of particle at N1 indicated 5 nm Ca-Si-U surface layer which was partially redissolved from particle examined at time N2

Constant Flow Rate, 0.2 mL/min



#### SUMMARY

- Actinide releases appear to be solubility limited
- · Soluble nuclide releases will be complicated to model
  - Fuel is nonhomogeneous gap, grain boundary and matrix components of release
  - Fuel degradation state of fuel and surface area change with time
- Soluble nuclide releases measured in semi-static tests
  - <sup>137</sup>Cs and <sup>14</sup>C; ~ 1% of inventory in first year
  - <sup>99</sup>Tc, <sup>137</sup>Cs, <sup>90</sup>Sr and <sup>129</sup>I; ~10<sup>-4</sup> to 10<sup>-3</sup> of inventory per year in later test cycles

#### Additional information needs

- Radionuclide distributions in spent fuel, particularly <sup>14</sup>C
- Dissolution behavior of oxidized fuel and other fuel types
- Effects of colloids
- Effects of water conditions on matrix dissolution rates
- Time-dependent model for exposed fuel surface area

#### REFERENCES

#### Semi-static and flow-through test methods

 Wilson C. N. and W. J. Gray. 1989. "Measurement of Soluble Nuclide Dissolution Rates From Spent Fuel." <u>Scientific Basis for</u> <u>Nuclear Waste Management XIII</u>. Materials Research Society Symposium Proceedings, 176:489-498.

#### Comparison of EQ3/6 results with results from laboratory tests

 Wilson, C. N. and C. J. Bruton. 1989. "Studies on Spent Fuel Dissolution Under Yucca Mountain Repository Conditions." <u>Ceramic</u> <u>Transactions</u>, 9:423-441. (also UCRL-100223.)

#### Semi-static test results

 Wilson, C. N. 1990. <u>Results from NNWSI Series 3 Spent Fuel</u> <u>Dissolution Tests</u>. PNL-7170, Pacific Northwest Laboratory, Richland Washington.

#### Flow-through test results

 Wilson C. N. and W. J. Gray. 1990. "Effects of Water Composition on the Dissolution Rate of UO<sub>2</sub> Under Oxidizing Conditions." <u>High</u> <u>Level Radioactive Waste Management</u>, pp 1431-6. (Proceedings of topical meeting, Las Vegas, NV, April 8-12, 1990)