

U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

PRESENTATION TO THE NUCLEAR WASTE TECHNICAL REVIEW BOARD

SUBJECT: PROTOTYPE FIELD TESTS OF THE NEAR FIELD ENVIRONMENT

- PRESENTER: ABELARDO L. RAMIREZ
- PRESENTER'S TITLE: GEOPHYSICIST AND ORGANIZATION: LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CALIFORNIA 94550
- PRESENTER'S TELEPHONE NUMBER: (415) 422-6909

JANUARY 18-19, 1990

Purpose is to evaluate the ability to characterize near field environment

 Evaluate technical feasibility of defining near field hydrothermal and geochemical environment during field testing

-measurement technique performance

- Provide in situ data to improve understanding of conceptual models for near field environment
- Develop Quality Assurance technical procedures

-evaluate under realistic conditions

Rock was perturbed by a heating & cooling cycle

Plan view of test region

Various sensors monitored hydrothermal behavior of the rock

- Temperature -- thermocouples (approx. 120)
- Moisture content -- dielectric, neutron, and gamma density logging
- Steam pressure -- air pressure transducers
- Matrix pore pressure -- psychrometers, microwave resonant circuits, capacitance sensors
- Rock permeability -- air injection tests
- Moisture invading heater borehole -- condensation trap
- Fracture mapping -- core logging, borehole tv
- Atmospheric pressure -- barometer

Measurements confirmed elements of the conceptual model

- Dry region around heater, drying increases toward heater
 - Saturation "halo" next to dry region and later dries as rock gets hotter
- Radius of dry region matched prediction of 0.6 0.7 m; total change is .16 g/cc
- Fractures have measurable effect on drying/ condensation front; re-wetting primarily along fractures
 - Measured temperatures close to predictions; slight fracture effect where boiling occurrs

There were some surprises

- Below heater rock dried faster as temperatures increased -gravity, fractures
- Above heater rock rewetted faster as temperatures decreased

 steeper moisture gradient, gravity
- Halo of increased saturation differs from predictions
 - due to high initial saturation? & to lack of wetting curves ?
- Slight increases in rock permeability

Several measurement problems: corrosion, inadequate calibration process, inconsistent results

Data from several boreholes are combined to form radial profiles

Drying front advanced faster below heater than above

Full power phase, 70 days after start of heating

Rock above the heater re-wetted faster than below

Heater off, 301 days from start of heating

Borehole NE-2A, ramp-down phase, changes relative to last day of heating

Capillary condensation, dripping and imbibition served as re-wetting mechanisms

Predicted and measured radial profiles are different

Side view showing thermocouple locations

Heat transfer by conduction and by mass transport

Liquid may be shed from top to sides and bottom of boiling region

Predicted and measured temperatures are very close

Heating changed air permeability near heater

.