U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

PRESENTATION TO THE NUCLEAR WASTE TECHNICAL REVIEW BOARD

SUBJECT:

RADIATION-CHEMICAL EFFECTS

PRESENTER:

DR. RICHARD A. VAN KONYNENBURG

PRESENTER'S TITLE:

ENGINEER

AND ORGANIZATION:

LAWRENCE LIVERMORE NATIONAL LABORATORY

LIVERMORE, CALIFORNIA 94550

PRESENTER'S

TELEPHONE NUMBER:

(415) 422-0456

JANUARY 18-19, 1990

start programme

Corrosion Products Identified

Cu

Cu₂O: always major product

Nitrate phase: present at low RH

CuO: minor component at 100% RH

Cu/Ni

Cu₂O: major product at 100% RH

Nitrate phase: major product at low RH

CuO: minor product at 100% RH

Al-bronze

Cu₂O: major product at 100% RH

Nitrate phase: major product at low RH

CuO: minor phase at 100% RH

Alloy 825

No significant corrosion

Preliminary Corrosion Experiments

Test Method

Materials: Alloy 825

CDA102, oxygen-free copper

CDA613, 7% Al-bronze

CDA715, 70/30 copper-nickel

- One coupon of each material in each vessel
- 0, 15, 100% relative humidity, floating total pressure
- Temperatures of 90, 120, 150, and 200°C
- One month duration, 7 x 10⁴ rad/h dose rate
- Product analysis: weight loss and gain measurements, XRD, SEM/EDS analysis of corrosion products

Summary and Conclusions

- Gamma radiation will be present at dose rates as high as the 10⁴ rad/hr range.
- Radiation-chemical effects will depend strongly on the humidity.
- Nitric acid, hydrogen peroxide, and ammonia can be formed, depending on environmental conditions.
- Radiation-chemical products can have significant effects on corrosion of copper-based candidate container materials:
 - Formation of Cu₂NO₃(OH)₃
 - Pitting
- No radiation-chemical effects were observed on corrosion of Alloy 825.
- Longer-term tests are needed to confirm and extend these results.

Others Who Have Contributed to Radiation-Chemical Studies

A Start Local

D.T. REED

V. SWAYAMBUNATHAN

B.S. TANI

J.K. BATES

ARGONNE NATIONAL LABORATORY

W.L. EBERT

T.J. GERDING

W.H. YUNKER

WESTINGHOUSE-HANFORD CO.

R.S. GLASS

LAWRENCE LIVERMORE NATIONAL LABORATORY

G.E. OVERTURF III

Environments Used in Corrosion Testing of Waste Containers Candidate Materials

Expected and Bounding

- 1. Water vapor
- 2. Air--water vapor mixtures
- 3. Liquid water solutions
 Well J-13 water
 Simulated J-13 water
 Concentrated solutions
- 4. Two-phase (moist air and liquid water solutions)

Radiation-Chemical Effects

Types of radiation and dose rate

Range of elemental composition of environment

Radiation-chemical effects on environments of interest

Water vapor
Dry air
Moist air
Liquid water
Two-phase (moist air and liquid water)

Interaction of radiation-chemical products with candidate container materials

Moist air Liquid water solutions

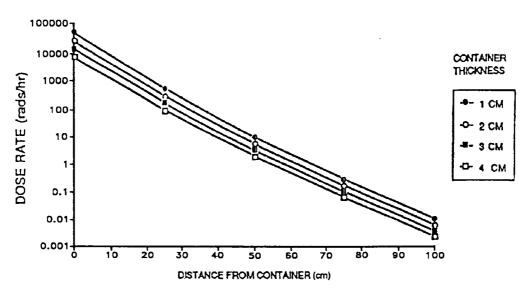
TYPES OF RADIATION EMITTED BY HIGH-LEVEL WASTE

From fission products:

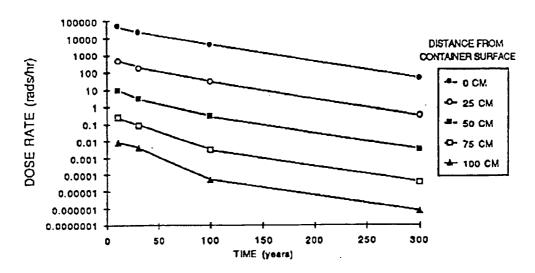
Beta particles Gamma rays (Neutrinos)

From actinides:

Alpha particles
Nuclei recoiling from alpha emissions
Neutrons
Fission fragment nuclei
Beta particles
Gamma rays
(Neutrinos)

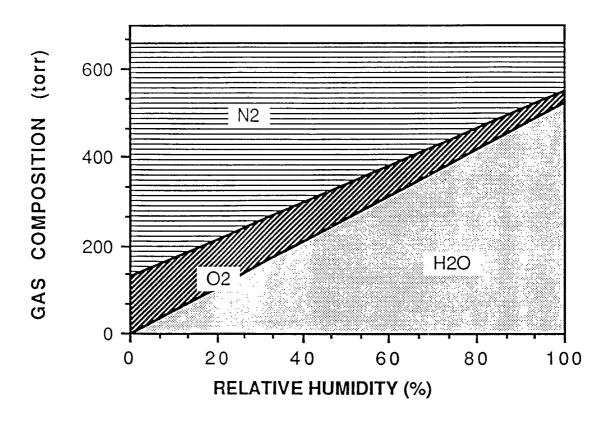

• A WIDE VARIETY OF TYPES OF RADIATION ARE EMITTED

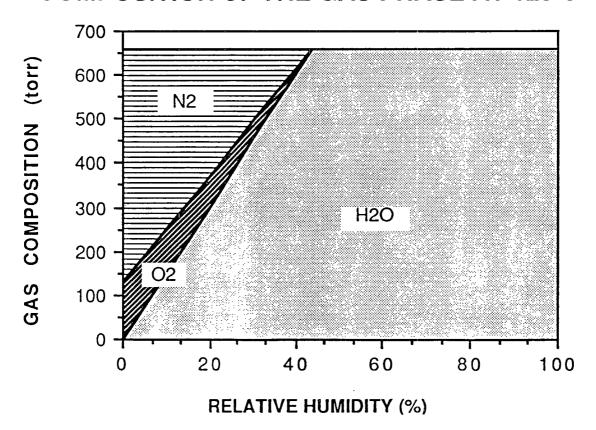
APPROXIMATE RANGES OF EMITTED RADIATION IN CONTAINER MATERIAL


		Range (mm)
1.	Alpha recoil Nuclei	10⁻⁵
2.	Alpha particles	10⁻²
3.	Fission fragments	10⁻²
4.	Beta particles	1
	Container Wall Thickness	10
5.	Gamma rays	$10^2 \text{ to } 10^3$
6.	Neutrons	10^2 to 10^3
7.	Neutrinos	very large

• ONLY GAMMA RAYS AND NEUTRONS COULD DELIVER SIGNIFICANT DOSES OUTSIDE THE CONTAINERS

GAMMA RAY DOSE RATES OUTSIDE OF CONTAINERS


Dose rate as a function of distance from container and container thickness. Ten year old spent fuel at 33,000 Mwd burnup used.


Dose rate as a function of time out of reactor and distance from container surface. Source burnup at 33,000 Mwd.

(Calculation by Reed and Underberg, 1986)

GAS PHASE COMPOSITION AT 90°C

COMPOSITION OF THE GAS PHASE AT 120°C

Radiation-Chemical Effects on Environments of Interest

1. Water Vapor

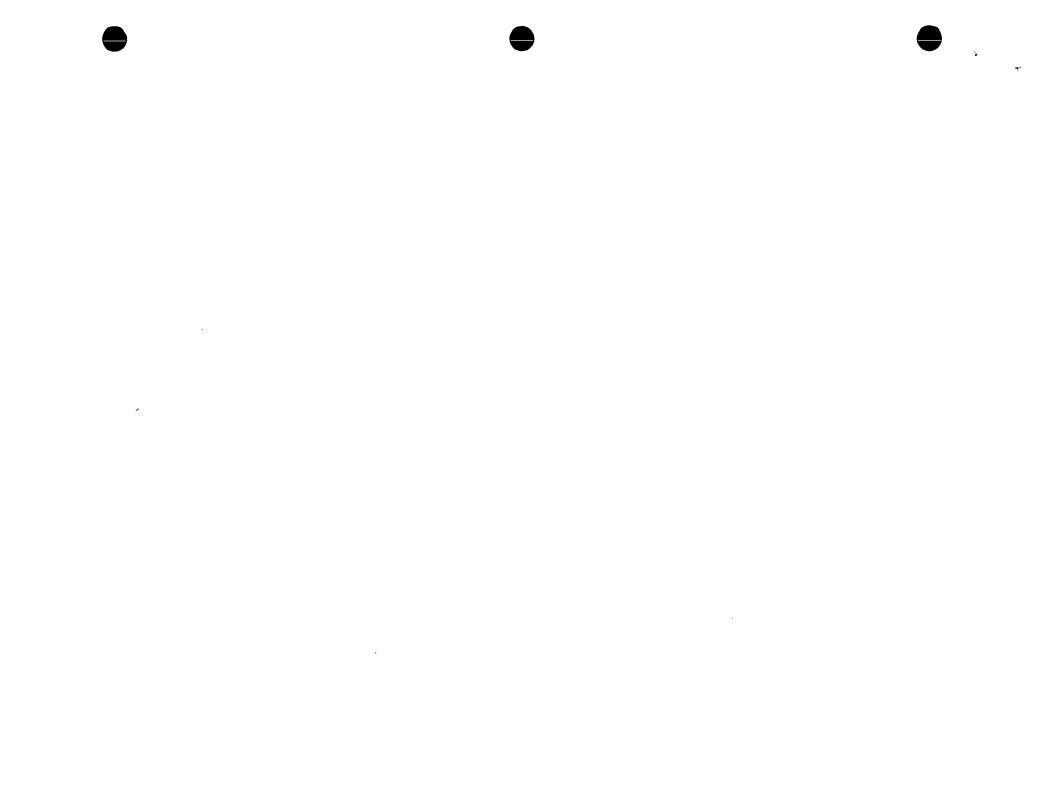
- a. Small steady-state concentrations of H₂, O₂, and H₂O₂ are produced.
- b. If catalytic materials such as Cu or MnO₂ are present,
 H₂O₂ decomposes to H₂O and O₂.

2. Dry Air

- a. N2O, O3, and N2O5 are produced.
- b. O3 decomposes and converts N2O5 to NO2.
- c. Long-term products are N2O and NO2.
- d. N2O is chemically stable, but NO2 is reactive, with Cu for example.

Radiation-Chemical Effects on Environments of Interest (continued)

3. Moist Air


- a. At room temp. and low humidity, products are N₂O, O₃, and HNO₃.
- b. At high humidity, ammonia is observed.

4. Liquid Water

- a. For pure water in a closed system, small steadystate concentrations of H₂, O₂, and H₂O₂ are produced
- b. If solutes are present or system is open, net radiolysis to H₂ and O₂ occurs.

5. Two-phase (Moist Air and Liquid Water)

- a. Nitrogen from air is fixed as NO_2 and NO_3 ions in the water.
- b. H+ ions are produced in equivalent amounts.
- c. pH drops unless buffer is present, for example HCO_3 .
- d. Radiolysis of water to H₂ and O₂ occurs, particulary if solutes are present.

