

U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

PRESENTATION TO THE NUCLEAR WASTE TECHNICAL REVIEW BOARD

SUBJECT: WASTE PACKAGE ENVIRONMENT INTRODUCTION

- PRESENTER: DALE G. WILDER
- PRESENTER'S TITLE: ENGINEERING GEOLOGIST/ GEOTECHNICAL ENGINEER AND ORGANIZATION: LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CALIFORNIA 94550

PRESENTER'S TELEPHONE NUMBER: (415) 422-6908

JANUARY 18-19, 1990

Focus of Presentations

- Near-field environment (not overall repository environment)
- Near-field defined by effects of processes not geometry
- Environment-container material interactions during 1,000 yr containment period.

Issues of WP Environment-Container Interactions

- Amount/transport of Water/water vapor
- Composition of water/water vapor
- Mechanical loading on container
- Thermal conditions (heat transfer, temperatures)
- Radiation-chemical effects

WP Environment Terminology

Expected The conditions that are judged most likely to occur during period of interest
Bounding Conditions that are judged to be beyond expected values, but within

possible ranges

Matrix Saturation - %

Expected Yucca Mountain Conditions (unchanged or ambient)

- Hydrologic Conditions Unsaturated S ≈ 65% moist (100% humidity) air in remaining voids Matrix suction potential high Fracture flow not expected
- Water Chemistry
 - bicarbonate water
 - vadose water chemistry unknown but expect to be in equilibrium with Topopah Springs Tuff
 - J-13 well water representative of water in saturated zone, but is not in equilibrium w/Tpt
- Mechanical Loading No lithostatic or hydrostatic loads No point loads
- Thermal

٠

Conductive, radiative, and convective-latent heat transfer

Cross Section of Yucca Mountain Hydrology

•

Bounding Yucca Mountain Conditions

 Liquid water in borehole (5 l /yr/borehole) for up to 5% of WPs

Requires either 1) much higher than expected flux

2) high infiltration pulse

- Chemistry more concentrated than expected
- Loading Small block failures--1000 to 3000 KG Point loading Sloughing provides bridge for lithostatic loads
- Thermal

More liquid water present--greater vapor influence local geologic variations

Waste Package Environment

Emplacement environment

Not ambient--perturbed by construction etc.

 WP environment emplacement perturbations will be changing with time

-thermal, radiation, and chemical reactions are all f(t)

- Understanding ambient conditions is necessary to evaluate perturbed conditions
- A table or matrix containing singleWP environment parameter values is not possible. Rather the "table" will consist of functional relationships (e.g., saturation and temperatures as functions of time)

Changing Environment with time Boiling Point Isotherms for 8 YOC Spent Fuel

ES-01/02/90-DW-24

TEMPERATURE PROFILE

•

ES-01/03/90-DW-23

Testing Plans to address Scale Dependency

Short Duration Tests (1-2 yrs, often overdriven)
 e.g. G-Tunnel, Lab Tests, Exploratory Shaft Test #1

Identify Physical Processes Provide Parameter Values Test Models over limited conditions Limited Model Validation

 Longer Duration Tests (3-5 yrs, partially overdriven) e.g., Exploratory Shaft Tests #2, and #3

Partially characterize physical processes that are sensitive to overdriving (i.e., overdrive heat slower rate cooling #2, slow heating with overdrive cooling #3)
Test models over more extended conditions
Additional model validation
Address geochemical and geomechanical

Performance Confirmation Tests (representative rate tests)

Exploratory Shaft Test #2--long term cooldown--validate cooldown portions of models Actual Waste Package Monitoring--validate heating portions of models

POTENTIAL FRACTURE FLOW PATH INTO WP EMPLACEMENT BOREHOLES

ES-01/03/90-DW-12d

Hydrologic Interactions T. Buscheck/ J. Nitao

Amount/transport of Water/water vapor

Thermal conditions (heat transfer, temperatures)

Composition of water/water vapor Mechanical loading on container Radiation-chemical effects

- Theory describing interaction of flow in fractures and matrix blocks--conditions under which fracture flow is possible which would allow water contact with WPs
- Matrix dominated flow--role of fractures (hinder or assist) in matrix flow in rock

Geochemical Interactions B. Glassley

Amount/transport of Water/water vapor Thermal conditions (heat transfer, temperatures)

Composition of water/water vapor

Mechanical loading on container Radiation-chemical effects

Rock water interactions, etc.

Mechanical Attributes of the WP Environment S. Blair

Amount/transport of Water/water vapor Thermal conditions (heat transfer, temperatures) Composition of water/water vapor

Mechanical loading on container

Radiation-chemical effects

- Hydrology impacts (Impact on air-gap)
- Geochemistry impacts--Surface Area
- Loading conditions block failures creep

G-Tunnel Prototype Test A. Ramirez

Field Scale Test of Hydrothermal Models, measurement techniques and procedures

Horizontal Orientation

Limited vertical extent of welded tuff

Limited resources prevented complete suite of testing that the reference orientation deserved--planned vertical for later more complete tests

- Understanding of physical processes
- Comparison of numerical and analytical codes and models for "generic" tuff
- Instrumentation/Measurement Technique Evaluation

Interaction of Radiation with the WP Environment R. Van Konynenburg

Amount/transport of Water/water vapor Thermal conditions (heat transfer, temperatures) Composition of water/water vapor Mechanical loading on container

Radiation-chemical effects

- Effects on Environment
- Interaction of radiation-chemical products with container materials

