

EXCAVATION INVESTIGATIONS STUDY

OBJECTIVES OF THE STUDY (STUDY PLAN 8.3.1.15.1.5)

- PROVIDE DATA TO HELP VALIDATE MODELS USED TO PREDICT ROCK MASS MECHANICAL BEHAVIOR
 - LARGEST SCALE
 - EXTENT OF STRESS-ALTERED REGION
- DEMONSTRATE CONSTRUCTABILITY OF THE REPOSITORY

DISTURBED ZONE AROUND AN UNDERGROUND OPENING

EXCAVATION INVESTIGATIONS STUDY

(CONTINUED)

SCP APPROACH

- SHAFT CONVERGENCE EXPERIMENT
- DEMONSTRATION BREAKOUT ROOMS EXPERIMENT
- SEQUENTIAL DRIFT MINING EXPERIMENT

EXCAVATION INVESTIGATIONS STUDY

(CONTINUED)

POST-SCP MODIFICATIONS

- SHAFT CONVERGENCE ACCESS CONVERGENCE
 - LESS EMPHASIS ON SHORT-TERM RESPONSE
 - MORE EMPHASIS ON EXTENT OF ALTERED REGIONS NEAR FAULTS AND IN UNITS ABOVE THE TSw2
 - RAMP TO CALICO HILLS
 - IN SITU STRESS MEASUREMENTS FROM ANGLED BOREHOLES
- DEMONSTRATION BREAKOUT ROOMS
 - LOWER ROOM MAY NOT BE NECESSARY EXCEPT TO PROVIDE SPACE FOR OTHER TESTS
 - MECHANICAL EXCAVATION DEMONSTRATION
- SEQUENTIAL DRIFT MINING
 - MECHANICAL EXCAVATION ~

ACCESS CONVERGENCE EXPERIMENT

OBJECTIVES

- MEASURE IN SITU STRESS AND STRESS CHANGES
- MEASURE DEFORMATION OF ROCK MASS SURROUNDING THE OPENING

ACCESS CONVERGENCE EXPERIMENT

(CONTINUED)

TEST DESCRIPTION

- MEASUREMENT STATIONS
 - EACH MAJOR UNIT
 - NEAR FAULTS
- EACH MEASUREMENT LEVEL INCLUDES THE SAME MEASUREMENTS
- IN SITU STRESS MEASUREMENTS USING OVERCOVERING TECHNIQUE AT EACH STATION
- 6-MPBXs, 12 TAPE EXTENSOMETER ANCHORS WILL BE USED AT EACH STATION

ACCESS CONVERGENCE MEASUREMENTS

LOWER MEASUREMENT LEVEL

SHAFT CONVERGENCE

PREVIOUS EXPERIENCE

PROTOTYPE

- NO FORMAL PROTOTYPE EXPERIMENT
- INSTRUMENTS HAVE BEEN EVALUATED IN:
 - G-TUNNEL
 - MPBX
 - TAPE EXTENSOMETER
 - HYDRAULIC PRESSURE CELLS

ANALYSES

• PRE-TEST ANALYSES FOR THE SHAFT WERE COMPLETED

REVISIONS

- RAMP ACCESS
- MACHINE BORING

FINITE ELEMENT MESH FOR SHAFT EXCAVATION ANALYSIS

HGEILC5P.125.NWTRB/6-27-91

EXCAVATION SEQUENCE FOR THE SHAFT

HGEILC5P.125.NWTRBA

EXCAVATION SEQUENCE ANALYSIS RESULTS

EXCAVATION SEQUENCE ANALYSIS RESULTS

HGEILC5P.125.NWTRB/6

OBJECTIVES

- PROVIDE EARLY DATA ON ROCK MASS RESPONSE TO EXCAVATION
- DEMONSTRATE CONSTRUCTABILITY OF REPOSITORY-SIZE OPENINGS IN THE HOST ROCK
 - HIGH AND LOW LITHOPHYSAE CONTENTS
 - EARLY FEEDBACK ON EFFECTIVE CONSTRUCTION TECHNIQUES
- PROVIDE SPACE TO CONDUCT OTHER TESTS

(CONTINUED)

TEST DESCRIPTION

- SELECT CRITICAL ORIENTATION BASED ON FRACTURE GEOMETRY AND IN SITU STRESSES
- EXCAVATE REPOSITORY-SIZED ROOMS BY BLASTING AND INSTALLING INSTRUMENTS IN SEQUENCE. MONITOR:
 - ROCK MASS MOVEMENT
 - ROCK BOLT LOADS OR STRAINS
 - EXCAVATION TECHNIQUES
- CONTINUE TO MONITOR DISPLACEMENTS AND LOADS UNTIL STEADY-STATE CONDITION IS REACHED

(CONTINUED)

CONDITIONS

- LOCATIONS
 - DENSELY WELDED TUFF, HIGH AND LOW LITHOPHYSAL CONTENT
- ORIENTATION
 - COINCIDENT WITH THE MOST CRITICAL OF THE TWO ORTHOGONAL ORIENTATIONS PLANNED FOR THE REPOSITORY DRIFTS

• TIMING

- MINE BOTH DBRs PRIOR TO REMAINDER OF MAIN TEST LEVEL

DIMENSIONS

- CROSS SECTION: REPOSITORY SCALE
- LENGTH: 6 X WIDTH

MINING

- MECHANICAL METHODS

(CONTINUED)

INSTRUMENTATION

PROPERTY

- ROCK MASS MOVEMENT
- CROSS-DRIFT CONVERGENCE
- ROCK BOLT LOAD

INSTRUMENT

- MULTIPLE-POINT BOREHOLE EXTENSOMETER (MPBX)
- TAPE EXTENSOMETER
- LOAD CELL, ULTRASONICS OR STRAIN GAUGES

DEMONSTRATION BREAKOUT ROOM

MULTIPLE-POINT BOREHOLE EXTENSOMETER (MPBX)

HGEILC5P.125.NWTRB/6-27-91

(CONTINUED)

PREVIOUS EXPERIENCE

- DEMONSTRATION DRIFT IN G-TUNNEL
 - MEASUREMENT OF RESPONSE TO EXCAVATION USING MPBXs, TAPE EXTENSOMETER, AND ROCK BOLT LOAD CELLS
 - INVESTIGATION OF TECHNIQUES FOR CONTROLLED BLASTING AND GROUND SUPPORT

EXCAVATION INVESTIGATIONS -SEQUENTIAL DRIFT MINING SEQUENTIAL DRIFT MINING EXPERIMENT

OBJECTIVES

- PROVIDE DETAILED INFORMATION ON EXCAVATION RESPONSE
 - SUPPORT MODEL VALIDATION
 - DELINEATE EXTENT OF EXCAVATION DAMAGE AND STRESS REDISTRIBUTION
- DEMONSTRATE CONSTRUCTABILITY OF REPOSITORY-SCALE OPENING
- PROVIDE SPACE AND BASELINE CONDITIONS
 FOR HEATED ROOM EXPERIMENT

(CONTINUED)

USE OF DATA

- VALIDATE MECHANICAL MODELS AT LARGEST SCALE
- DEFINE CHARACTERISTICS AND EXTENT OF BLAST-DAMAGED ZONE AND STRESS-ALTERED REGION
- VERIFY CONSTRUCTABILITY OF UNDERGROUND REPOSITORY AS DESIGNED
 - IMPACT OF LITHOPHYSAE
 - ORIENTATION
 - GEOMETRY
 - TECHNIQUES

(CONTINUED)

TEST DESCRIPTION

- MINE INSTRUMENTATION DRIFTS
- DRILL HOLES INTO CENTRAL AREA AND CHARACTERIZE ROCK MASS USING
 - CORE LOGGING AND BOREHOLE INSPECTION
 - BOREHOLE PERMEABILITY MEASUREMENTS
 - CROSS-BOREHOLE AND CROSS-DRIFT SEISMICS

• ESTABLISH BASE CONDITIONS USING

- BOREHOLE EXTENSOMETERS
- BOREHOLE STESSMETERS
- BOREHOLE DEFLECTOMETERS

(CONTINUED)

TEST DESCRIPTION (CONTINUED)

• EXCAVATE CENTER DRIFT

- MONITOR INSTRUMENTS CONCURRENTLY
- INSTALL BOREHOLE EXTENSOMETERS, CROSS-DRIFT CONVERGENCE PINS, AND ROCK BOLT LOAD CELLS ALONG CENTER DRIFT
- MONITOR MINING ACTIVITIES
- REPEAT CHARACTERIZATION OF ROCK MASS AFTER EXCAVATION

(CONTINUED)

CONDITIONS

- LOCATION
 - MAIN TEST LEVEL
- ORIENTATION
 - COINCIDENT WITH REPOSITORY
- DIMENSIONS OF CENTER DRIFT
 - CROSS SECTION: REPOSITORY SCALE
 - LENGTH: 6 X WIDTH
- MINING OF CENTER DRIFT
 - SAME METHOD AS REPOSITORY
- SUPPORTS
 - ROCK BOLTS, WIRE MESH

(CONTINUED)

INSTRUMENTATION

PROPERTY

- ROCK MASS MOVEMENT
- CROSS-DRIFT CONVERGENCE
- ROCK BOLT LOAD OR STRAIN
- BOREHOLE DEFLECTION
- PERMEABILITY
- STRESS CHANGE

INSTRUMENT

- BOREHOLE EXTENSOMETER
- TAPE EXTENSOMETER
- LOAD CELL, ULTRASONICS, OR STRAIN GAUGES
- DEFLECTOMETER
- STRADDLE PACKER/ INJECTION APPARATUS TO BE FABRICATED
- UNDECIDED; PROTOTYPE EXPERIMENT USED RIGID INCLUSION BSMs

SEQUENTIAL DRIFT MINING EXPERIMENT

HGEILC5P.125.NWTRB/6-27-

(CONTINUED)

PREVIOUS EXPERIENCE

PROTOTYPE TEST COMPLETED: DEMONSTRATION DRIFT IN G-TUNNEL

- SINGLE INSTRUMENTATION DRIFT
- MEASURED
 - ROCK MASS DISPLACEMENT
 - CROSS-DRIFT CONVERGENCE
 - ROCK BOLT LOADS
 - BOREHOLE DEFLECTION
 - PERMEABILITY CHANGES
 - STRESS CHANGES

DEMONSTRATION DRIFT

(b)

PLAN VIEW OF DEMONSTRATION DRIFT EQUIPMENT

(a)

PHOTOGRAPH OF DEMONSTRATION DRIFT

TAPE EXTENSOMETER MEASUREMENTS **DEMONSTRATION DRIFT**

HORIZONTAL

MODEL OF DEMONSTRATION DRIFT EXPERIMENT

DEFORMED FINITE ELEMENT MESH

HGEILC5P.125.NWTRB/6-27-91

COMPARISON OF CALCULATED DISPLACEMENTS vs DATA

HGEILC5P.125.NWTRB/6-27-91