U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

PRESENTATION TO THE NUCLEAR WASTE TECHNICAL REVIEW BOARD

SUBJECT: PROBABILITY CALCULATIONS

PRESENTER: BRUCE M. CROWE

PRESENTER'S TITLE

AND ORGANIZATION: VOLCANOLOGIST

LOS ALAMOS NATIONAL LABORATORY

PRESENTER'S

TELEPHONE NUMBER: (702) 794 - 7096

MARCH 1, 1991

PROBABILITY CALCULATIONS: CURRENT STATUS

- 1. STRATEGY FOR COMPLETING WORK
 - -- STUDY PLAN 8.3.1.8.1.1
 - -- PROBABILITY DISTRIBUTION E1 AND E2: MULTIPLE MODELS
 - -- OPTION: EXPERT OPINION
- 2. REVISED CALCULATIONS
 - -- AFTER NRC REVIEW OF STUDY PLAN
 - -- CHRONOLOGY AND VOLUME DATA FROM 8.3.1.8.5.1
- 3. Possible Presence of Magma Chambers
 - -- TELESEISMIC TOMOGRAPHY
 - -- SEISMIC GAP
 - -- GEOLOGIC RECORD: MAGMATIC GAP
 - -- GEOPHYSICAL REVIEW
- 4. EVALUATION OF UNCERTAINTY: PROBABILITY CALCULATIONS
 - -- PERCEPTION OF UNBOUNDED UNCERTAINTY
 - -- Upper Probability Bounds are Fixed if
 - ... CONSTRAINTS ARE ESTABLISHED FROM THE GEOLOGIC RECORD

Two Scenarios for Future Volcanic Activity

1. POLYCYCLIC EVENT: RECURRENCE OF AN ERUPTION AT AN EXISTING CENTER

MAYBE A HIGH PROBABILITY EVENT

- -- DEPENDENT ON RESOLUTION OF CHRONOLOGY DATA
 NO EFFECT ON YUCCA MOUNTAIN
 - -- SEISMIC EFFECTS
 - -- GROUND WATER EFFECTS

EVALUATED AS PART OF CONSEQUENCE ANALYSIS

- 2. FORMATION OF A NEW VOLCANIC CENTER
 - -- FINITE PROBABILITY OF DISRUPTING YUCCA MOUNTAIN

EMPHASIS OF PROBABILITY CALCULATIONS

IMPORTANT TO DISCRIMINATE SCENARIOS

1. CONDITIONAL PROBABILITY

 $PR_{DQ} = \{E3 \text{ given } E2 \text{ given } E1\}$

E1 is the rate of formation of New Volcanic Centers

E2 IS THE PROBABILITY OF DISRUPTION

E3 IS THE PROBABILITY THAT DIRECT RELEASES FROM MAGMATIC DISRUPTION OF THE REPOSITORY EXCEED REGULATORY GUIDELINES

- 2. ALL VOLCANISM WORK IS STRUCTURED TO PROVIDE DATA TO ASSESS THE CONDITIONAL PROBABILITY
 - -- DATA COLLECTION: STUDY PLAN 8.3.1.8.5.1
 - -- PROBABILITY CALCULATIONS (E1 AND E2): STUDY PLAN 8.3.1.8.1.1
 - -- DISRUPTIVE EFFECTS (E3): STUDY PLAN 8.3.1.8.1.2
- 3. Individual probability values are estimates. The significant constraints are the probability bounds.
- 4. 40 CFR PART 191 APPENDIX B "... PERFORMANCE ASSESSMENTS NEED NOT CONSIDER CATEGORIES OF EVENTS OR PROCESSES THAT ARE ESTIMATED TO HAVE LESS THAN ONE CHANCE IN 10,000 OF OCCURRING OVER 10,000 YEARS."

 10^{-8} yr^{-1}

BEHAVIORAL RULES: CONDITIONAL PROBABILITY

- 1. Individual Probability Values are Estimates -- Large uncertainty
- 2. PROBABILITY RANGE IS DEFINED TO BOUND UNCERTAINTY
 -- APPROACH PHYSICAL LIMITS OF VOLCANIC PROCESSES
- 3. ALTERNATIVE MODELS ARE IMPORTANT <u>IF</u> THEY CHANGE PROBABILITY RANGE
 - -- MAY NOT NEED TO DISCRIMINATE ALL MODELS (RETIREMENT PROGRAM)
- 4. Propagation of Conservative or "Worst Case" Assumptions
 - -- PARAMETERS ARE CORRELATED

OFTEN CAN'T CHANGE ONE WITHOUT EXAMINATION OF OTHERS

- -- CAN LEAD TO PHYSICALLY IMPLAUSIBLE RATES
- -- REALITY CHECK: GEOLOGIC RECORD
- 5. DATA GATHERING FOR PROBABILITY CALCULATIONS
 - -- BURDEN OF PROOF REQUIREMENTS EG. CHRONOLOGY STUDIES
 - -- PERSPECTIVE OF FALSE POSITIVE/FALSE NEGATIVE LW OLD WHEN YOUNG LW YOUNG WHEN OLD
- 6. PROBABILISTIC PERSPECTIVE: COMPARISON OF MODELS
 - -- AGREEMENT WITH NRC APPROACH
 - -- COMMON GROUNDS FOR COMPARING DIFFERENCES
- 7. Professionalism Urged: Public Sensitivity
 - -- CALCULATIONAL DIFFERENCES INSTEAD OF RHETORIC

E1: RECURRENCE RATE MODELS

- 1. Poisson Model
 - -- CONE COUNTS PER TIME
 - -- UNIFORMITY OF RATES
 - -- NO EVENT MEMORY
 - -- DEFINITION OF A VOLCANIC EVENT
 - -- IGNORES MAGMATIC VOLUME
- 2. TIME-SERIES ANALYSIS
 - -- INSUFFICIENT DATA
- 3. VOLUME-PREDICTABLE MODEL
 - -- CUMULATIVE VOLUME VERSUS TIME
 - -- RATE CAN BE TIME DEPENDENT
 - -- SUPPORTED BY THE GEOLOGIC RECORD
- 4. CLUSTER MODEL (PALEOMAGNETIC RESULTS)
 - -- 4 EVENTS IN 3.7 MA
 - -- 3 EVENTS IN QUATERNARY
 - -- GEOMETRIC CONTROL: CLUSTERS
- 4. TRIGGERED POISSON PROCESS
 - -- MINIMUM VOLUME ACCUMULATION TO TRIGGER
 - -- Poisson Process After Exceeding Minimum Volume

PROBABILITY BOUNDS ARE NOT SENSITIVE TO RECURRENCE RATE MODELS

RECURRENCE RATES: BOUNDS FROM MAJOR VOLCANIC FIELDS

LUNAR CRATER VOLCANIC FIELD

82 Quaternary Centers in 28 clusters > 60 km^3 of magma

VENT DENSITY: .33

CIMA VOLCANIC FIELD

29 QUATERNARY CENTERS IN 22 CLUSTERS

> 20 KM³ MAGMA

VENT DENSITY: .10

YUCCA MOUNTAIN REGION

7 QUATERNARY CENTERS IN 3 CLUSTERS

0.5 KM3 OF MAGMA

VENT DENSITY: .015

MAXIMUM VENT DENSITY

MAUNA KEA: .39 KILIMIJARIO: .40

RATE (EVENTS/YR)	100,000 YR	1,000,000 YR	2,000,000 YR
10-4	10	100	200
10 ⁻⁵	1	10	20
10-6	-	1	2

RATE BOUNDS (EVENTS/YR)

Lunar 4 x 10^{-5} Cima 2 x 10^{-5} Yucca 10^{-5} to 10^{-6}

то то

2 x 10⁻⁵ 1 x 10⁻⁵

STRUCTURAL CONTROLS OF VOLCANISM

- 1. CATCH 22
 - -- MORE EVENTS BETTER CHANCE TO UNDERSTAND CONTROLS
 - -- MORE EVENTS INCREASES E1
- 2. YUCCA MOUNTAIN REGION
 - -- ONLY 7 EVENTS OR 4 CLUSTERS IN 3.7 MA
 - -- UNCONSTRAINED STRUCTURAL MODELS MAY BE POSSIBLE
 - -- NW/NE TRENDS: AGREEMENT
 - -- Scale of Trends volcanic field

VOLCANIC CENTERS

- 3. PATTERNS OF MAJOR BASALTIC VOLCANIC FIELDS
 - -- RELATIVELY SHARP BOUNDARIES
 - -- DISTINCT PATTERNS WITHIN FIELDS
 - -- DISPERSION: KM VERSUS 10'S OF KMS

PLIOCENE - QUATERNARY BASALT DISTRIBUTION YUCCA MOUNTAIN REGION

YUCCA MOUNTAIN REGION: STRUCTURAL MODEL (DESPITE CAUTIONS)

- 1. Upper Mantle: Great Basin and Basin and Range
- 2. BASALT GENERALLY TRAPPED IN THE CRUST -- GEOPHYSICS
- 3. ASCENT THROUGH CRUST (STRUGGLE)
 - -- AIDED IN AREAS OF HIGHER EXTENSIONAL RATES
 - -- MAGMAS PROBABLY EXPLORE PATHS OF LEAST RESISTANCE
 - -- RANDOM ASPECT TO ASCENT PROCESS
- 4. N-W TRENDING MANTLE ZONE
 - -- RESIDUAL WALKER LANE STRUCTURE?
- 5. RANDOM MODEL, 1982 PAPER: 10^{-3} to 10^{-4}
 - -- EPRI MODELS OF VOLCANIC FIELDS
 - -- SMITH ET AL. MODEL

INSIGHTS: MAJOR VOLCANIC FIELDS

LUNAR VOLCANIC FIELD

distance weighted least squares

LUNAR VOLCANIC FIELD

gaussian bivariate ellipsoid: CF=50

LUNAR VOLCANIC FIELD

gaussian bivariate ellipsoid: CF=.99

CIMA VOLCANIC FIELD, CALIFORNIA

MAXIMUM VENT DENSITY = 0.14 km²

QUATERNARY RECURRENCE RATE = 1.6 x 10⁻⁵ EVENTS YR⁻¹

CIMA VOLCANIC FIELD distance weighted least squares

CIMA VOLCANIC FIELD

gaussian bivariate ellipsoid, CF=.50

CIMA VOLCANIC FIELD gaussian bivariate ellipsoid, CF=.99

RECURRENCE RATE (E1): ASSUME STEADY STATE SYSTEM

VOLCANISM APPEARS TO BE WANING

- -- DECREASING VOLUME THROUGH TIME (3.7 MA TO HOLOCENE)
- -- DECREASING MAGMA EFFUSION RATES (LAVA MORPHOLOGY)
- -- GEOCHEMICAL TRENDS/ANALOGUES
- -- DURATION OF CONTINENTAL BASALTIC VOLCANIC FIELDS

DISRUPTION RATIO (E2): CALCULATION CONSERVATIVE

VOLCANIC EVENT UNLIKELY AT YUCCA MOUNTAIN

- -- PASS PATTERNS OF ACTIVITY: NW ZONE
- -- BASALT ERUPTIONS RARE IN RANGE INTERIORS
- -- GEOMETRY OF BASALTIC VOLCANIC FIELDS

QUATERNARY VENT COUNTS

