STATISTICAL ANALYSIS OF BASALTIC VOLCANISM NEAR THE YUCCA MOUNTAIN SITE

С. -Н. Но

Department of Mathematical Sciences University of Nevada, Las Vegas

(This work is supported by the Nevada Nuclear Waste Project Office)

GOALS

- :

To estimate

- 1. the recurrence rate
- 2. the waiting time of the next eruption
- 3. the probability of at least one eruption during the next 10,000 years
- 4. the probability of volcanic disruption of the repository during the next 10,000 years (in progress)

Need a model that captures the basic elements of the study :

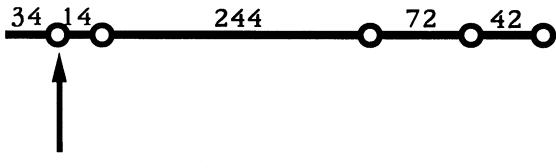
ŧ

- 1. Objectivity
- 2. Trend
- 3. Predictability
- 4. Mathematical Simplicity

TIME SERIES

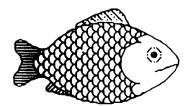
generated by stochastic phenomena (events)

Data : 34, 14, 244, 72, 42 (inter-event times)

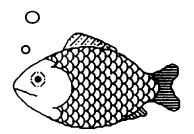


1

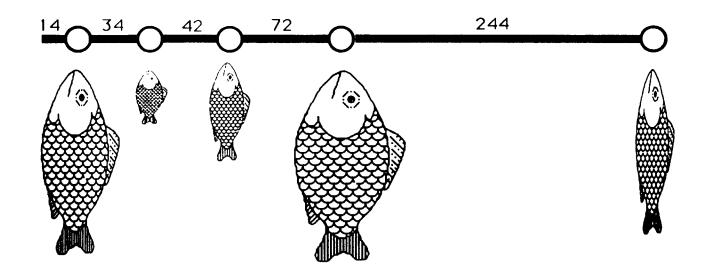
earthquake, volcanic eruption, etc.

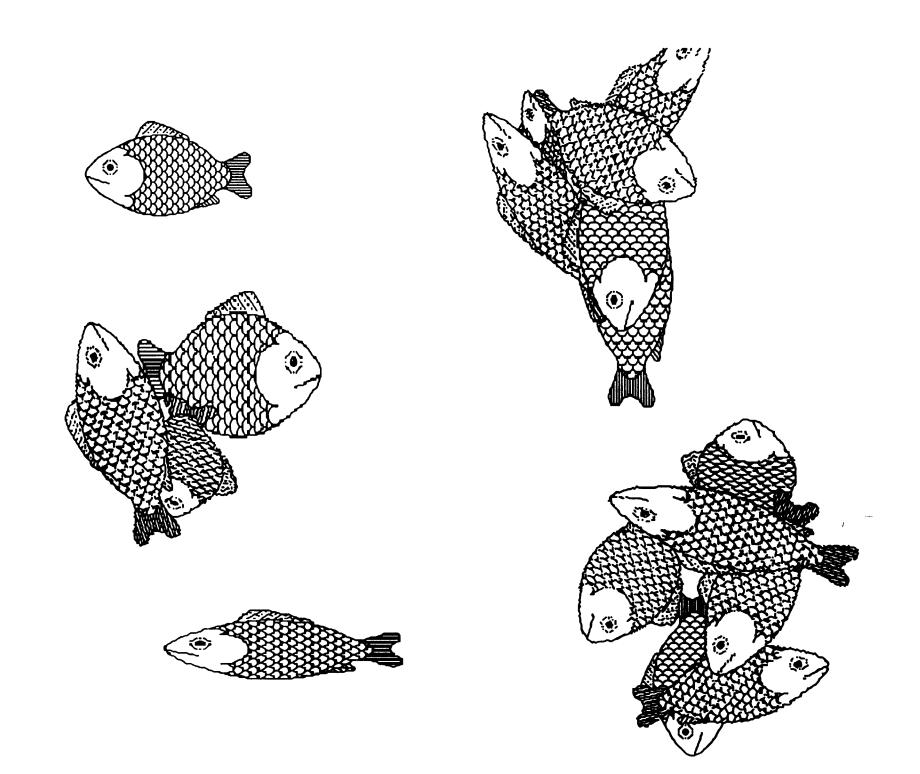


And you should have seen the one that got away!



Ο



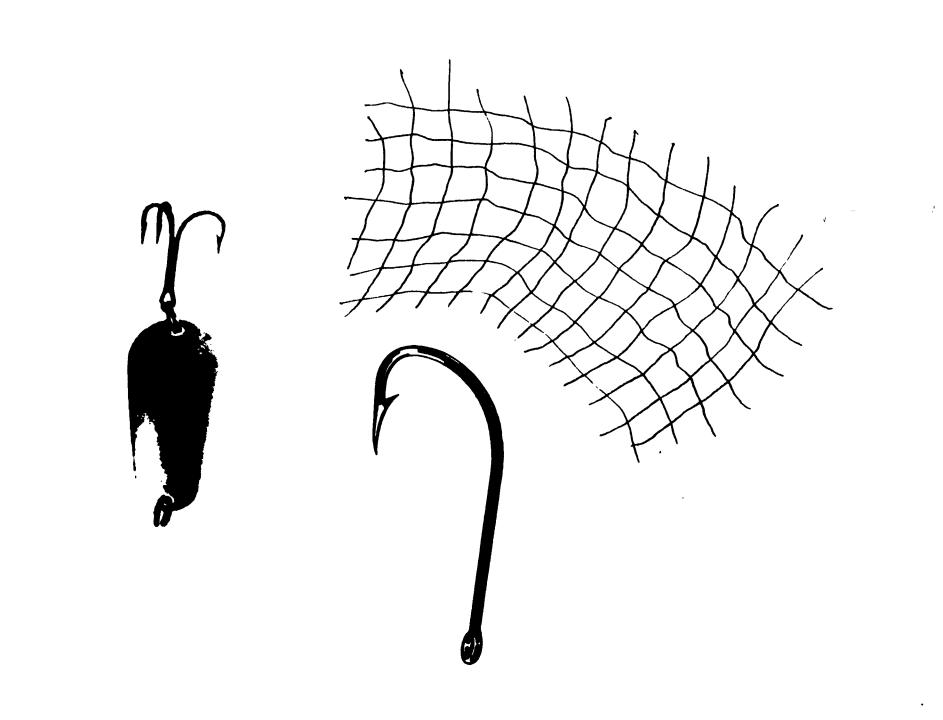


•

WHAT IS A SINGLE EVENT?

- 1. Need a clear definition
- 2. Based on the understanding of fishing techniques (or eruptive processes, etc.)

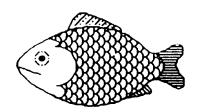
1



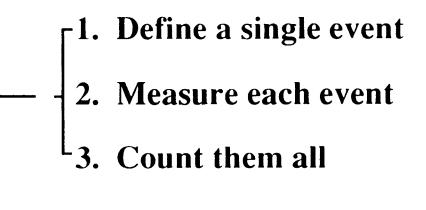
.

WHAT TO MEASURE?

- variables of interest
- 1. length
- 2. weight
- 3. volume
- **4.** age
- 5. freshness

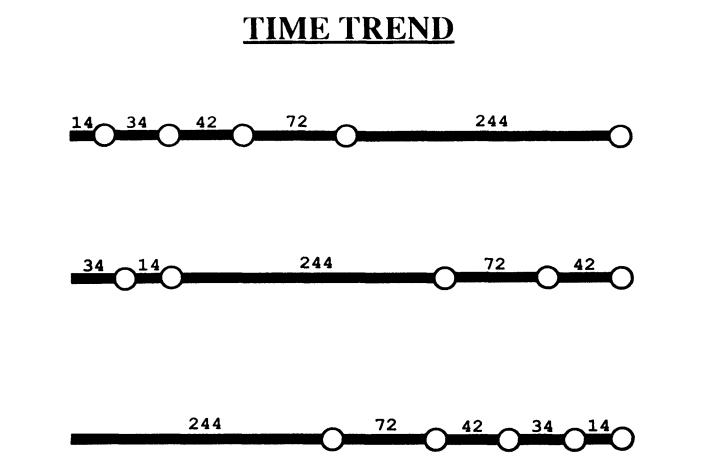


(

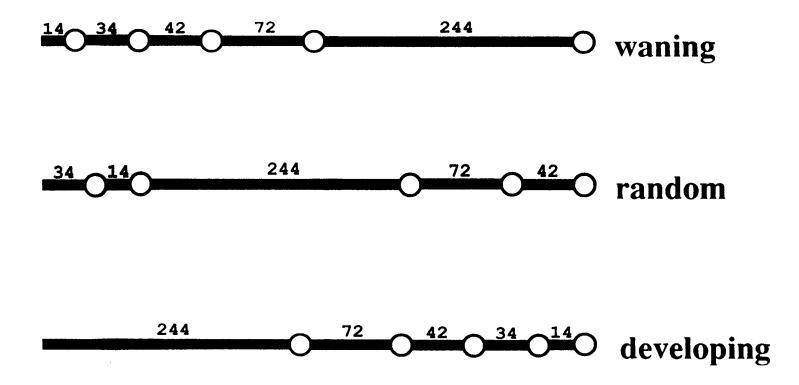


Ţ

- generate a TIME SERIES



÷.



- _'

,

.

•`

÷.,

A Simple Poisson Model (a homogeneous Poisson Process, HPP) ignores the time trend, and assumes A CONSTANT RATE OF OCCURRENCES (λ). $\lambda = \#$ events / obs. time

= reciprocal of average inter-event time

- 1. GENERALIZE a constant λ with $\lambda(t)$, a function of time
- 2. Model X(t) = number of events in [0,t]
 - X(t) follows a nonhomogeneous Poisson process (NHPP) with parameter $\mu(t)$

$$\mu(t) = \int_0^t \lambda(s) \, \mathrm{d}s$$

(Parzen, 1962, p. 138)

- Choice of $\lambda(\mathbf{t}) = (\beta/\theta) (\mathbf{t}/\theta)^{\beta 1}$
- yields $\mu(t) = (t/\theta)^{\beta}$

æ •

• implies a Weibull (θ,β)

$$\beta = 0 \text{ simple Poisson} \\ < 1 \text{ decreasing}$$

Let $t_1, t_2, ..., t_n$ be the first n successive times of events in [0,t]: $t_1 < t_2 < ... < t_n$

•
$$\widehat{\beta} = n / \sum_{i=1}^{n} \ln(t/t_i)$$

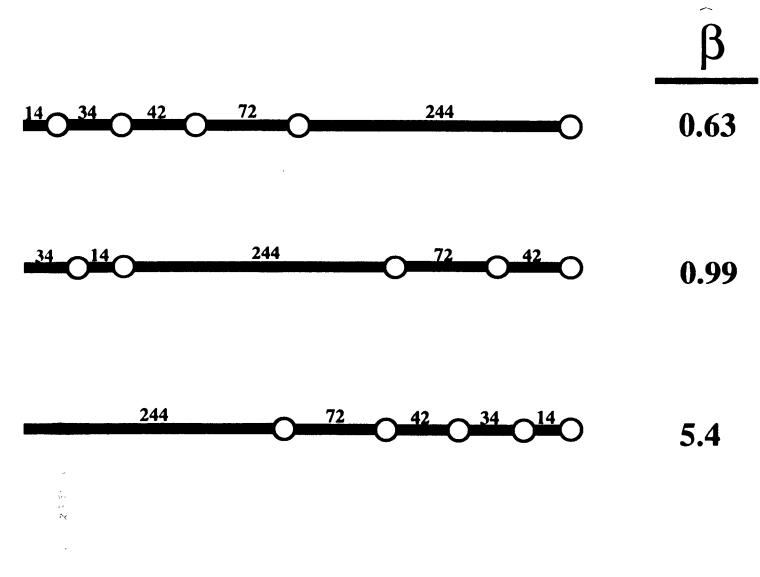
•
$$\widehat{\theta} = t/n^{1/\widehat{\beta}}$$

ť

•
$$\lambda = (\hat{\beta}/\hat{\theta}) (t/\hat{\theta})^{\hat{\beta}-1}$$

(Crow 1974, 1982)

· · · · · ·



.

<u>.</u> .

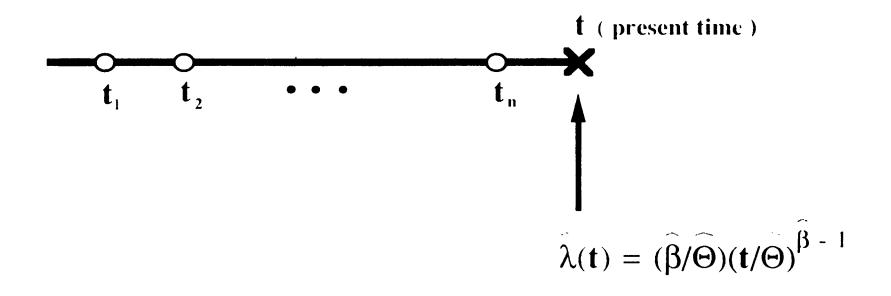
· · · · · ·

Goodness-of-fit test

.

$$H_0: \beta = 1$$
$$H_A: \beta \neq 1$$
$$> 1$$
$$< 1$$
$$X^2 = 2n/\widehat{\beta} \sim \chi^2(2n)$$

Instantaneous Recurrence Rate



___′

Volcanism Near the Yucca Mountain Site

•.

- Post-6 Ma (Pliocene and younger)
- Quaternary (< 1.6 Ma)

(Crowe et al. 1982, Smith et al. 1990, Wells et al. 1990)

GOALS

To estimate

- 1. the recurrence rate
- 2. the waiting time of the next eruption
- 3. the probability of at least one eruption during the next 10,000 years

1

4. the probability of volcanic disruption of the repository during the next 10,000 years (in progress)

Identify a single event (eruption)

• cluster of centers (volcanic belt) ?

1

- a volcanic center ?
- a main cone ?

.

• a small vent ?

A main cone is the final stage of a single eruption, and a single eruption could have several small vents to accompany the main cone

· · ·

(Crowe et al. 1983)

1

Count each widely recognized main cone as a single event, but do not require that the main cones in each center be of separate ages.

•

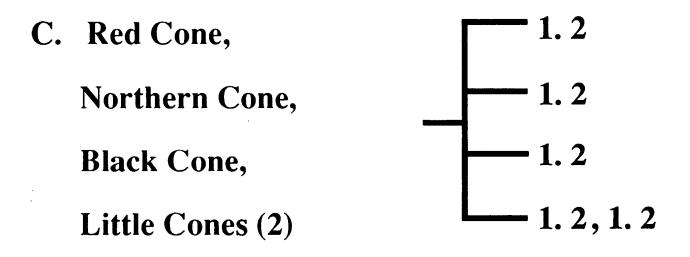
A. **3.7** Ma basalts

•

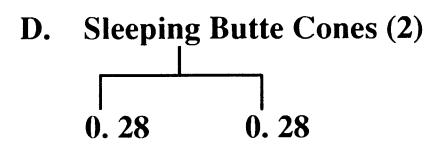
3.7	3.7	3.7	3.7

Daniel Feuerbach (personal communication 1990)

B. Buckboard Mesa 2.8



(Vaniman et al. 1982)



E. Lathrop Wells Cone 0.01

2.1

(Crowe and Perry 1989, Wells et al. 1990)

1

Preliminary Data Set

3.7, 3.7, 3.7, 3.7, 2.8, <u>1. 2, 1. 2, 1. 2, 1. 2, 1. 2, 0. 28, 0. 28, 0. 01</u> (B) Quaternary

(A) Post-6 Ma

(A)
$$\widehat{\beta} = 2.29$$
 (one-sided p-value $\doteq 0.005$)
 $\widehat{\lambda} = 5 \times 10^{-6} / \text{yr}$

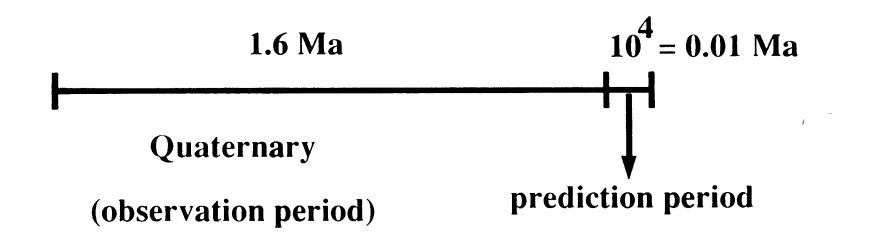
1

(B)
$$\widehat{\beta} = 1.09$$
 (one-sided p-value $\doteq 0.45$)
 $\widehat{\lambda} = 5.5 \times 10^{-6} / \text{yr}$

$$\hat{\lambda} = 5.5 \text{ x } 10^{-6}/\text{yr}$$

• The estimated instantaneous recurrence rate

 It represents the instantaneous eruptive status of the volcanism at the end of the observation time t (present)



- 1. The projected time frame is about 0.6% of the OP
- 2. It is only 5% of the average repose time
 ↓
 Suggests switching from a NHPP to a predictive HPP model

It is further justified on the basis of

- 1. mathematical simplicity
- 2. objectivity (given the uncertainty of future geophysical phenomena)
- 3. a slight increasing trend ($\beta = 1.09$ for the Quaternary volcanism

Model $X(t_0) = #$ of eruptions during the next t_0 years.

$X(t_0) \sim Poisson(\hat{\lambda}t_0)$

• •

Predictions

2. e.

1. Average waiting time to the next eruption is $\hat{\lambda}^{-1}$ (a confidence interval is possible)

2. Pr(at least one eruption during the next t_0 years) = 1 - exp{ $\hat{\lambda}t_0$ }

Observation period	<u>Empir</u>					
	β	$\hat{\beta}$ $1/\hat{\lambda}$ (Ma)		Probability Isolation Period (yr)		
	(p-value)	(90% C.I.)	1	10⁴	<u> 10</u> ⁵	
6.0 Ma-	2.29 (0.005)	0.20 (0.11, 0.45)	5 x 10 ⁻⁶	0.05	0.39	
1.6 Ma-	1.09 (0.45)	0.18 (0.08, 0.55)	5.5 x 10 ⁻⁶	⁶ 0.05	0.42	

,

1

•

Polycyclic Volcanism

Lathrop Wells volcano is a polycyclic volcano

(Crowe et al. 1989, Wells et al. 1990)

One Step further: assuming there are 3 additional eruptions, 1.2, 1.2, 1.2, 1.2, 1.2, 0.28, 0.28, 0.01, 0.01, 0.01, 0.01 Then 1. $\hat{\beta} = 1.50$ (p-value = 0.125) 2. $\hat{\lambda} = 10^{-5}/\text{yr}$ (doubled) 3. $\hat{\lambda}^{-1} = 9.7 \times 10^4$ years (50% sooner)