U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT			
THE NUCLEAR	PRESENTATION TO WASTE TECHNICAL REVIEW BOARD		
SUBJECT:	NEW GEOCHEMICAL DATA		
PRESENTER:	FRANK V. PERRY		
PRESENTER'S TITLE AND ORGANIZATION:	PROFESSOR OF VOLCANOLOGY UNIVERSITY OF NEW MEXICO		
PRESENTER'S TELEPHONE NUMBER:	(505) 277 - 6528		
MARCH 1, 1991			

GOALS OF CRATER FLAT PETROLOGY STUDIES:

- 1. Understand overall Magmatic Evolution of the Crater Flat field.
- 2. Understand nature of Polycyclic Volcanism at individual eruptive centers.

EVIDENCE FOR DECLINING MAGMA FLUX:

1. Field evidence

-Decline in eruptive volumes and lava effusion rates.

2. Petrologic evidence

-Deepening of magma reservoirs (different phenocryst assemblages and trace element contents)

-Increased magma evolution

From Frey et al., 1990

MAUNA KEA POSTSHIELD VOLCANISM (Frey et al., 1990)

	<u>Basaltic</u> substage	<u>Hawaiitic</u> substage
Composition	alkali basalt	hawaiite
<u>Volume</u>	850 km^3	25 km^3
Petrography	porphyritic	aphyric
<u>Sr</u>	400-700 ppm	1100-1300 ppm
<u>Sc</u>	20-40 ppm	5-15 ppm

BASALT PETROGENESIS

FRACTIONATION DIAGRAM

MODELS FOR GEOCHEMICAL VARIATIONS

La

CONCLUSIONS:

- 1. Eruptive events at Lathrop Wells represent separate partial melts.
- 2. Apparent lack of melt interactions are consistent with long time intervals between eruptions.

NEEDS:

- Integration of chemistry with stratigraphy

 are there systematic variations with time?
- 2. Analytical capability