

- Investigated two scenarios from human intrusion event tree
- Chose cases with presumed greatest consequences
 - Direct (mechanical) transport of waste
 - (Aqueous, gas transport in UZ slower)
- Processes modeled were abstracted
 - Modeled every FEP in path, but with simplifying assumptions
- Investigated two drilling-incident scenarios
 - Surface release
 - Release through saturated-zone transport
- Analyses included both base-case and sensitivity studies

Assumptions--Conceptual

- Human intrusion occurs by 20th-century drilling practices
- Probability of drilling at site = 1.0
- Boreholes are drilled according to EPA drilling densities
- Probability of hit is based on geometry
- Transport is entirely mechanical
- Source term is primary determinant of release
- Direct hits and near misses contribute to releases
- Saturated-zone transport in tuff or carbonate aquifers

Surface Release Drilling Scenario

Saturated Zone Release Scenario

Assumptions--Process

- Waste is uniformly distributed in potential repository
- Up to entire waste package can be released
- Contaminated rock occurs due to diffusion from packages
 - Based on PACE-90 results
- Mechanical transport:
 - Waste is entrained in drilling mud to surface
 - Waste falls down drillhole to saturated zone
- Source term used limited number of radionuclides (inventory includes decay and ingrowth from chains)
- Aqueous transport in saturated zone influenced by velocity and retardation
- Time of occurrence of drilling randomly chosen

Distribution of Radionuclides in Repository

Log of EPA Sum

Conditional Probability Distribution for Surface Releases due to Drilling 10⁰ Complementary cumulative probability **10** ⁻¹ **10** - 2 10 ⁻³

 10^{-4} _______ 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2}

Effect of Increasing the Number of Boreholes Drilled over 10,000 Years

Aqueous Releases from Tuff Aquifer Due to Human-Intrusion Drilling

- Using these models, releases from human intrusion are below EPA limit
- Drilling density must be increased greatly before releases approach EPA limit
- Near misses do not come close to exceeding the EPA limit
- Surface releases appear to be independent of site characteristics
- Including the probability of drilling at the Yucca Mountain site will reduce the probabilities of releases further
- Aqueous releases are highly dependent on estimates of ground-water velocity and retardation
- Using more detailed models may not improve estimates

Basaltic Igneous Activity

- Investigated one scenario from event tree
 - Investigated direct basaltic-dike intrusion into repository, followed by the release at the surface via volcanism
 - Other senarios may actually have greater consequences
- Used abstracted models
 - Relied on prior analyses for model and parameters
 - Developed 2 simple models for the process
- Analyses included both base-case and sensitivity studies

Basaltic Igneous Activity Event Tree

Conceptual-Model Assumptions

- Basaltic dike acts directly on waste packages
 - Dike passes directly through repository
 - Intrusion continues to surface
- Waste is fragmented and entrained in dike by thermomechanical effects
- Fragments are erupted as part of cinder cone or lava sheet at surface
 - Entrained radionuclides are released at surface
 - Waste is not encapsulated in lava

Process Assumptions

- Amount of waste entrained is linearly related to volume of intersection of dike and repository
 - Geometric model of interaction
 - Field observations of volcanic activity
- Ranges for parameters (dike width, wall-rock fraction entrained, etc) elicited from Valentine (LANL)
- Probability of occurrence taken from Crowe's work (LANL)
- Because of low probability, conditional CCDF for consequences was calculated first
 - Used Monte Carlo simulations for dike-waste interaction
 - Final CCDFs calculated from conditional CCDFs and probabilities
- Sensitivity studies investigated reasonable parameter variations

Comparison of Two Models for Surface Release due to Basaltic Igneous Activity into Repository

Conclusions

- Direct releases are below EPA limit
 - Models used conservative assumptions about transport processes
 - No cases were found from sensitivity studies with much larger releases
- Releases from basaltic igneous activity do not contribute significantly to this estimate of totalsystem releases
- Future igneous-activity analyses should concentrate on indirect effects (e.g., changes in ground-waterflow patterns)

- Two methods for generating an overall CCDF:
- 1) Single Monte Carlo simulation with ALL important FEPs included

2) Identify scenario classes

- Mutually exclusive and exhaustive
- Calculate conditional CCDFs
- Calculate final CCDF by weighting components
- TSPA used a modification of method 2
 - Identify specific scenarios and calculate conditional CCDFs
 - Combine CCDFs by various techniques
 - Combined CCDF is still conditional

Methods of Combining CCDFs

1) Weighted Sum--used for mutually exclusive scenarios

- e.g., human intrusion cases
- 2) "Horizontal Addition"--done as an expedient for not calculating CCDFs with correlations
 - e.g., aqueous and gaseous cases
 - Associates high releases from one case with high releases from the other case
 - This technique is probably appropriate when one parameter is dominant for both processes
- 3) Probablilistic sum--used for completely independent scenarios
 - e.g., 6 UZ columns modeled by Total System Analyzer
 - Combine by randomly drawing EPA sums from each simulation

Methods of Combining CCDFs

Aqueous Releases, Composite-Porosity Model Six Columns and Combination

Combined Conditional CCDF for Gaseous and Aqueous (Composite-Porosity Model) Releases

Overall Conditional CCDF, Assuming Composite-Porosity Aqueous Transport

Overall Conditional CCDF, with Three Weightings of Composite-Porosity and Weeps Models

Summary of SNL's TSPA Analyses

- An analysis using abstracted models and data structures has been completed
 - Results of modeling are consistent with SNL's understanding of the process from more detailed modeling
 - Conditional CCDFs for four scenarios have been combined into an overall conditional CCDF