

Hydrologic Data Set

Probability distribution required for each parameter in each hydrostratigraphic unit

- Matrix Saturated Hydraulic Conductivity
- Matrix Porosity
- Matrix Saturated Volumetric Water Content
- Matrix Air-Entry Parameter
- Matrix Desaturation Parameter
- Matrix Residual Saturation
- Fracture Saturated Hydraulic Conductivity
- Fracture Saturated Volumetric Water Content
- Fracture Air-Entry Parameter
- Fracture Desaturation Parameter
- Fracture Residual Volumetric Water Content
- Fracture Density

Followed Formalism in Kaplan, 1991

- Parameters defined as random variables
- The probability density function is a model of the analyst's uncertainty
- Uncertainty has a quantitative basis
- Information reduces uncertainty
- Information is defined as the elements of a set of quantitative constraints
- Constraints are defined as the minimum value, the maximum value, the expected value, and the coefficient of variation of the random variable

An Example

Porosity in the lower hydrostratigraphic unit

Expert Elicitation

Probability distributions required for each of the following parameters

- Dike Trend
- Dike Width
- Erupted Volume of Magma
- Fraction of Wall Rock Entrained by Dike
- K_d, Cesium Vitric Tuff
- K[°]_d, Cesium Zeolitic Tuff
- K_d, Neptunium Devitrified Tuff
- K_d, Neptunium Zeolitic Tuff
- K_d, Uranium Vitric Tuff
- K_d, Uranium Devitrified Tuff
- K_d, Uranium Zeolitic Tuff

Fraction of Wall Rock Entrained

Uranium Devitrified Tuff

Results of the Expert Elicitation

- Easy for a trained interrogator to apply
- Graphic and interactive
- Fast results
- Product appears to satisfy both the expert and the analyst
- Cost effective

Summary

Generated a probabalistic data base that can be used for sensitivity and uncertainty analyses in future PA efforts