OFFICE OF	U.S. DEPARTMENT OF ENERGY CIVILIAN RADIOACTIVE WASTE MANAGEMENT
NUCLEAR W	FULL BOARD MEETING
SUBJECT:	TSPA AQUEOUS AND GASEOUS RELEASE CALCULATIONS
PRESENTER:	MICHAEL L. WILSON
PRESENTER'S TITLE AND ORGANIZATION:	SENIOR MEMBER TECHNICAL STAFF SYSTEM PERFORMANCE ASSESSMENTS SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO
ESENTER'S LEPHONE NUMBER:	(505) 844-9337

Outline

Source term

- Ground-water flow and transport
- Gas flow and transport
- Results

Factors Included in the Source Term

ASGCTW.125.NWTRB/4-7-92

Radionuclides Included in Calculations

Alteration-limited: ¹⁴C, ⁷⁹Se, ⁹⁹Tc, ¹²⁹I, ¹³⁵Cs Solubility-limited: ¹²⁶Sn, ²³⁴U, ²³⁷Np, ²³⁹Pu, ²⁴³Am

Assumed 60% PWR, 40% BWR spent fuel

Release Modes In Source Model

3 release types:

- advection
- diffusion
- advection + diffusion
- 3 mobilization types: prompt release (gap/grain boundaries)
 - matrix alteration
 - dissolution

¹³⁵Cs Release Rate Using Average Values for Input Parameters

²³⁴U Release Rate Using Average Values for Imput Parameters

ASGCTW.125.NWTRB/4-7-92

Source-Model Simplifications

- After container failure, the container and cladding are neglected as barriers to releases
- Releases for each radionuclide are represented as a superposition of several, modes, with each mode having a simple functional form.
- Probability distributions were developed for only some of the source parameters, so the full uncertainty is not represented

- Source term
- Ground-water flow and transport
- Gas flow and transport
- Results

Factors Included in the Ground-water Flow Problem

;

Composite-Porosity Model of Ground-water Flow

Weeps Model of Ground-water Flow

How Many Flowing Fractures Does it Take for 5600m³/yr of Water?

How Many of the Flowing Fractures Contact Waste Containers?

Flow Aperture vs Contacted Containers Average Case

Flow Aperture of Major Flowing Fractures (microns)

Weeps-Model Simplifications

- Major flowing fractures are all the same size
- No matrix/fracture interaction (flow/transport only in fractures)
- Unsaturated-zone travel time neglected
- Only waste containers fail as contacted by a flowing fracture

Composite-Porosity Model of Ground-water Flow

Profile Through USW H-5, USW G-4, and UE-25a#1

Probability distributions for K_d (ml/g)

Element (rock type)	Distribution type	Distribution parameters
Selenium (devitrified) Selenium (zeolitic) Selenium (vitric)	uniform beta uniform	0 to 5 min. 5, max. 21, mean 10, std. dev. 3 0 to 4
Technetium	constant	0
Tin	constant	100
lodine	constant	0
Cesium (devitrified) Cesium (zeolitic) Cesium (vitric)	beta beta beta	min. 20, max. 100, mean 50, std. dev. 10 min. 0, max. 6000, mean 2000, std. dev. 500 min. 20, max. 100, mean 50, std. dev. 10
Uranium (devitrified) Uranium (zeolitic) Uranium (vitric)	uniform beta uniform	0 to 5 min. 5, max. 21, mean 10, std. dev. 3 0 to 4
Neptunium (devitrified) Neptunium (zeolitic) Neptunium (vitric)	exponential exponential exponential	mean 2 mean 4 mean 0.5
Plutonium	constant	100
Americium	constant	100

Composite-Porosity Model Simplifications

- Strong matrix/fracture coupling
- Isothermal
- Steady-state water flow
- One-dimensional, vertical flow and transport
- Retardation represented by K_d

Czarnecki and Waddell Model of Saturated Zone

Effective Saturated-Zone Velocity Distribution

Saturated-Zone Simplifications

- Properties of tuff and carbonate aquifers lumped together
- Strong matrix/fracture coupling
- Based on a single realization of the saturated zone, so parameter variability and uncertainty not fully represented

Outline

- Source term
- Ground-water flow and transport

.

- Gas flow and transport
- Results

Factors Included in the Gas Flow Problem

Ross, Amter, and Lu Model of Gas Flow

Path lines with ambient temperature, permeability contrast between welded and nonwelded tuffs 100x (10x in faulted area). (cross section N760000)

Path lines with the repository heated to 330 K, permeability contrast between welded and nonwelded tuffs 100x (10x in faulted area). (cross section N760000)

Carbon Retardation Factors for Gaseous Transport

Gas Flow Simulated for Four 2-D Cross Sections

¹⁴C Travel-Time Distributions 87 C, 57 C, 42 C, 27 C

ASGCTW 125 NWTRB/4-7-92

Tsang and Pruess Model of Repository Temperature

ASGCTW.125.NWTRB/4-7-92

Gas-Flow-Model Simplifications

- Gas permeability high enough that transport is advection-dominated
- Gas flow decoupled from water flow
- Travel-time distributions calculated for steadystate conditions
- Temperature always exaggerated (except possibly at early times)
- Carbon geochemistry simplified

Outline

- Source term
- Ground-water flow and transport
- Gas flow and transport
- Results

Monte Carlo Simulation

Aqueous Releases

EPA sum

Aqueous and Gaseous Releases

C-14

59.6%

۱

Conclusions

- Our abstract/detailed approach is workable
- Preliminary modeling shows gaseous ¹⁴C releases to be the largest contributor to the total-system CCDF
- Preliminary modeling shows localized fracture flow to produce lower releases than uniform matrix/fracture flow (because fewer waste containers are affected)