

### Tunnel Dynamics Experiment Objective

To correlate measured ground motions with observed tunnel damage

## Description of the Tunnel Dynamics Experiment Tunnel

Dimensions - 6 m high x 5.8 m wide

4.9 m Lg x 2.9 cm  $\phi$  RB's nominally spaced on 1.2 m centers

4 to 10 cm of fibercrete lining

Host rock - nonwelded ashfall tuff-rock mass rating of 57

Tunnel axis approximately perpendicular to direction of loading



## Description of the Tunnel Dynamics Experiment Measurements

12 m tunnel section Triaxial acceleration measurements Permanent displacements Tunnel convergence Borehole observations Still & high-speed photography



# **Pre-test View Looking Toward Portal**

.

## **Post-test View Looking Toward Portal**

# **Pre-test View of Rib Farthest from Event**

-

.

## **Post-test View of Rib Farthest from Event**

## **Pre-test View of Rib Closest to Event**

,

.

## **Post-test View of Rib Closest to Event**





## Results from the Tunnel Dynamics Experiment Tunnel Convergence Measurements



90H9000.14

## Results from the Tunnel Dynamics Experiment Radial Free-Field Ground Motions



## Conclusions from the Tunnel Dynamics Experiment

- A self-consistent data set produced
- Only minor damage was observed
- Observed damage consistent with case histories in the literature

#### **Question:**

Are the results applicable to Yucca Mountain? (Major differences in source, geology & ground motion levels)

# Analysis

### **Source differences**

- Compression dominated vs. shear dominated
- Duration of shaking
- Frequency content

### Comments

- For wavelengths and tunnel dimensions of interest, tunnel behavior will be similar for both compression dominated and shear dominated wavefronts
- Duration of shaking within a factor of 2
- Frequency not important as long as wavelength/ tunnel diameter is large (i.e. > 8)

# Analysis

#### **Geologic differences**

- Repository: Moderately to densely welded ash-flow tuff - highly fractured
- TDE: Non-welded, partially saturated ash-fall tuff

### Comments

- RMR of repository rock → 61 & TDE → 57 implies that these dissimilar rocks are comparable in their rock-mass behavior
- Assuming RMR captures important aspects of dynamic behavior, strains induced by same loading in repository rock would be ~20% less than TDE - damage essentially the same

# Analysis

**Design basis ground motions** 

- No design basis for repository tunnels yet from RIB Version 4:
  - Design basis for exploratory shaft ground motions of 0.3 g (vs. 28 g) and 0.3 m/s (vs. 23 m/s)
  - Design basis for other facilities ground motions 0.4 g (vs. 28 g)

### Comments

 Strains calculated from these motions order of magnitude less than TDE

### Comparison of a Postulated Design Basis Earthquake and TDE Results





## Conclusions

- TDE source stimulated a tunnel response similar to what might be expected in the near-field region of small-to-moderate ( $M_{h} = 5.0$ ) earthquake
- Comparison of rock properties indicates a similar level of damage would have occurred in a tunnel constructed in the repository host rock subjected to same loading
- Ground motions used for design of repository tunnels likely to be much less than those observed in the TDE and can be accommodated in the design