Hanford Waste Vitrification Plant

GLASS ENVELOPE DEFINITION

PR Hrma GF Piepel RJ Robertus DE Larson

Presentation for Nuclear Waste Technical Review Board Tower Inn Richland, WA May 11-12, 1992

> Pacific Northwest Laboratory

Glass Envelope Definition REAL AND AND AND Fare INCC I Dene and the LIMPER IN 18 MIZ 🖬 the close (1776-bases de * ₩2,000 • 0.000 1,000 • 0.000 Hickory 1 1 felt (0.274 1 al (0.889 1 (0.877 1 al (0.877 1 al (0.877 1 al (0.877 1 al (0.877) 1 al (0.274) 1 al (la fi fl W = 0.28

NLAW mod

Glass Envelope Definition Objectives

- Provide validated and verified glass composition/property models for Hanford waste composition range to assure:
 - High quality, consistant product
 - HWVP process compatibility

Glass Property Requirements

HWVP Glass Property Acceptability Criteria Processing Viscosity at 1150°C 2-10 Pa.s Electrical conductivity at 1150°C 18-50 S/m Liquidus temperature ≤1050°C (excludes noble metals) Phase separation No liquid-liquid melt phase separation No melt foaming **Processing characteristics** Acceptable melting rate Waste Acceptance Preliminary Specifications - June 1991 **Borosilicate Glass** Composition Descriptive (Chemical, crystalline, radiochemical) Dissolution rate in deionized water PCT **≤EA glass (TBD)** $(\leq 1.0 \text{ q/m}^2\text{-day})$ $(MCC-1 (28-day, SA/V = 10 m^{-1}))$ **Glass transition temperature** Descriptive Time/temperature/transition Descriptive **Devitrification during cooling Cooled glass not exceed** transition temperature

> Pacific Northwest Laboratory S9202037. 6

Waste Borosilicate Glass

Acceptable Envelope

Glass Envelope Definition Approach

Waste Pretreatment and Characterization

- Scoping Studies
- Efficient Statistical Experimental
 Design for Mixture Modeling
- Testing
 - Waste Acceptance
 - Process
 - Replication
 - Other Glasses
- Testing Data Analyses (Modeling)
- Model Validation
- Modeling Application

Glass Envelope Definition Empirical Models

• Fulcher's Equation

• Arrhenius Equation

Pacific Northwest Laboratory

Glass Envelope Definition Empirical Models (continued)

• First-Order Model

$$y = \sum_{i=1}^{10} b_i x_i$$

• Second-Order Model

$$\mathbf{y} = \sum_{i=1}^{10} \mathbf{b}_{i} \mathbf{x}_{i} + \sum_{i< j}^{10} \mathbf{b}_{ij} \mathbf{x}_{i} \mathbf{x}_{j}$$

- y property or its mathematical transform
- **b**_i and **b**_{ii} coefficients
- x_i mass fractions of glass oxide

components

Pacific Northwest Laboratory

Overview of Glasses Tested So Far

- Glasses selected from study region intended to be somewhat larger than region of glasses with acceptable properties
- 81 glasses tested so far: 23 in CVS-I, 19 in CVS-II Phase 1, 39 in CVS-II Phase 2 (73 distinct and 8 replicates)
- 42 glasses on boundary, 25 on interior, and 14 in the "center" of study region
- 3 glasses with NCRW-, PFP-, and CC-based "Others" mixes and 2 glasses with UO₂

Ln Viscosity at 1150°C From Fulcher Equation for Each Glass [In(Pa-s)]

Predicted Viscosity at 1150°C from the Second-Order Mixture Model #1 (from Table 7.6) Versus Predicted Viscosity at 1150°C From the Fulcher Equation for Each Glass (from Table B.2)

Predicted Component Effects on Viscosity at 1150°C Relative to the HW-39-4 Composition

Measured Electrical Conductivity at 1150°C from Arrhenius Equation for Each Glass (S/m)

Ln Electrical Conductivity at 1150°C from the Arrhenius Equation for Each Glass[In(S/m)]

Predicted Electricial Conductivity at 1150°C from the Second-Order Mixture Model #1 (from Table 8.4) Versus Predicted Electrical Conductivity at 1150°C from the Arrhenius Equation for Each Glass (from Table C.2)

Component Wt.% Change from IIW-39-4 Value

Predicted Component Effects on Electrical Conductivity at 1150°C Relative to the HW-39-4 Composition

Measured Transition Temperature (°C)

Predicted Versus Measured Glass Transition Temperature Values for the Second-Order Mixture Model #1 (from Table 9.3)

Predicted Component Effects on Glass Transition Temperature Relative to the HW-39-4 Composition

Predicted Versus Measured MCC-1 B Release for the First-Order Mixture Model Fitted to the Full Data Set (from Table 12.2)

Predicted Versus Measured MCC-1 B Release for the Second-Order Mixture Model Fitted #1 to the Reduced Data Set (from Table 12.4)

1

Component Wt% Change from HW-39-4 Value

Predicted Component Effects on MCC-1 Normalized B Release (Based on First-Order Mixture Model Fitted to The Reduced Data Set, N=73 Means) Relative to the HW-39-4 Composition

Predicted Versus Measured PCT B Release for the Second-Order Mixture Model #1 (from Table 12.11)

Component Wt% Change from HW-39-4 Value

Predicted Component Effects on PCT Normalized B Release (Based on First-Order Mixture Model Fitted to the Full Data Set, N=79 Means) Relative to the HW-39-4 Composition

Ternary Waste Envelope Assessment Tool (TWEAT)

Current Capability

Uses Linear Property Models

<u>INPUT</u>

DISPLAYS

INFORMATION

- Acceptable Composition Envelope
 - Waste
 - Frit
 - Recycle
- Specific Glass Composition Properties
- Displays Constraints

Composition

- Waste (10 Components)
- Frit (10 Components)
- Recycle (10 Components)

Constraint Properties

- Viscosity
- Electrical Conductivity
- Durability
- (Liquidus Temperature)

Date: 04/27/92 Time: 9:51:37 PM

Weight Fraction Oxides

Comp.	Frit	NCAW	Recycle	<u> Glass</u>	Outside exp. bodry
SiO ₂	0.7356	0.0040	0.4367	0.5280	No
B ₂ Oz	0.1963	0.0001	0.0000	0.1370	No
Na ₂ 0	0.0000	0.2142	0.4253	0.0700	No
Li ₂ 0	0 0681	0.0000	0.0000	0.0480	No
CaO	0.0000	0.0079	0.0030	0.0020	No
1 liger	0 0000	0.0020	0.0032	0.0010	No
Fe ₂ Og	0.0000	0.2821	0 0107	0.0770	No
Al ₂ Oz	0.0000	0.0904	0.0410	0.0260	No
2112	0.0000	0.1511	0.0000	0.0410	No
others	0.0000	0.2482	0.0801	0.0700	No
sum	1.0000	1.0000	1.0000	1.0000	
vertex fraction	0 7000	0.2727	0 0273		

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	high limit safety within low limit close to exp low limit limit limit						
MgO Fe2O3 Al2O3 ZrO2 others 0.080 0.080 0.000	SIO2 0 570 0 420 0.5280	B 2 O 3 0 200 0 050 0 1370	Na2O 0 200 0 050 0.0700	L 1 2 0 (1 U70 U 010 0.0480	CaO 0 100 0 000 0 000		
	MgO 0 080	Fe2O3 0 150	A1203 0 150	2 r O 2 U 130 U 000	0 th ers 0 100 0 010		

Data at Selected Point

Waste Loading (g/g glass)	0 2727
Recycle Loading (g/g glass)	0 0273
Frit Required (g/g glass)	0 7000
Temperature @ 10 Pa•s (°C)	
Viscosity @ 1150 °C (Pa•S)	6 985
Electrical Conductivity (S/m)	25 072
Si	
В	15 304
Li	14 537
Na	
Liquidus (°C)	

Waste Simulant and Glass Property Models Validation

Approach

Test Data/Property Models Correlation

Summary

• Current Results Indicate that:

Empirical Modeling based on statistical experimental testing appears to adequately predict glass properties

Melt electrical conductivity Melt viscosity Glass transition temperature Glass durability

based on composition

Summary (continued)

- Investigation of glass temperature history effects on some glass properties such as durability is planned
- The approach appears viable to define a glass envelope for HWVP operation when supplemented with melter testing and redox modeling