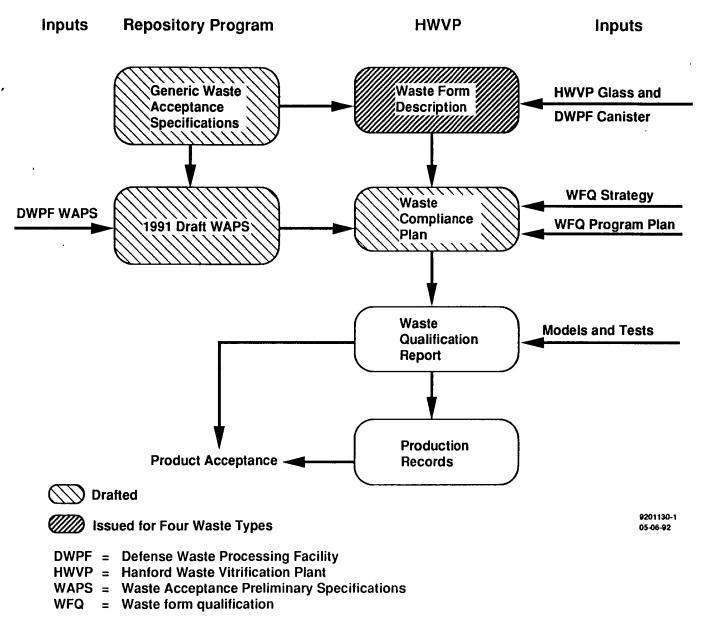
Hanford Waste Vitrification Plant Project Waste Form Qualification Program and Approach

Presented to:

Nuclear Waste Technical Review Board Richland, Washington

May 11, 1992


E. T. Weber E. H. Randklev Westinghouse Hanford Company Richland, Washington

9201130 WEBER/NUCLEAR/WASTE/BOARD-1

Hanford Waste Vitrification Plant Waste Form Qualification

- Waste form qualification (WFQ) documentation per U.S. Department of Energy Waste Acceptance Process
- Process overview
- Approach for WFQ compliance
- Technology and WFQ schedule
- WFQ summary

Hanford Waste Vitrification Plant WFQ Document Flowchart

Waste Acceptance Preliminary Specifications

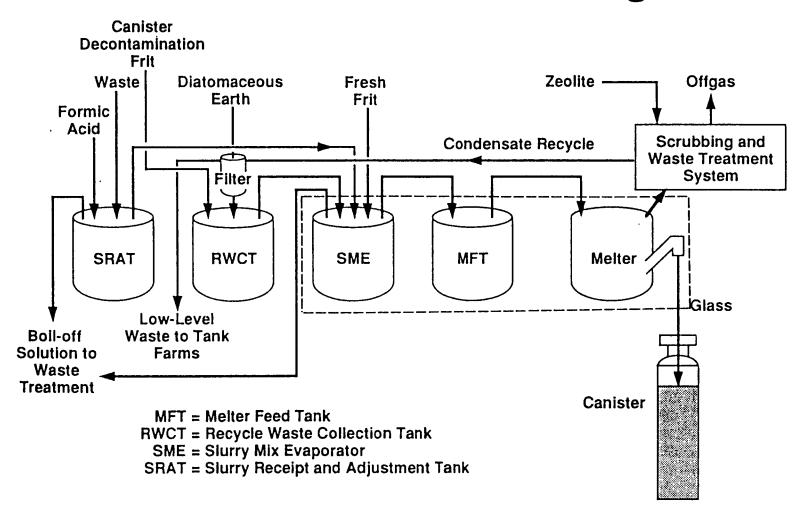
Technical requirements

1.0 Waste Form

- Chemical composition
- Radionuclide inventory
- Product consistency
- Phase stability

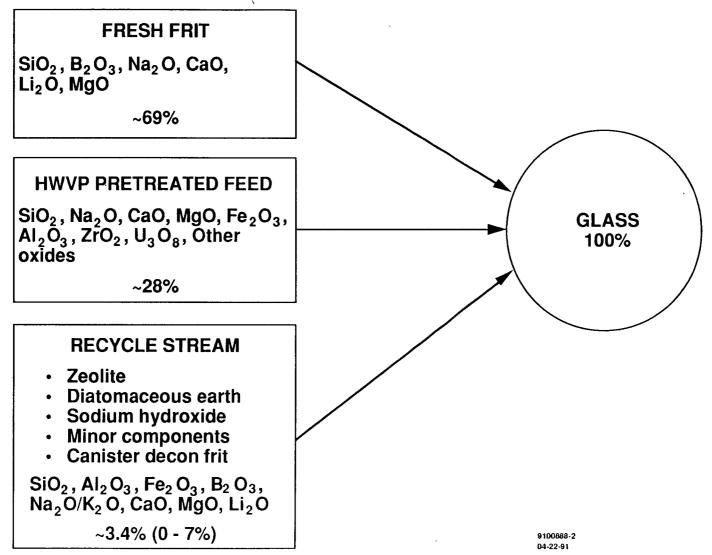
2.0 Canister

- Material
- Fabrication and closure
- Identification and labeling

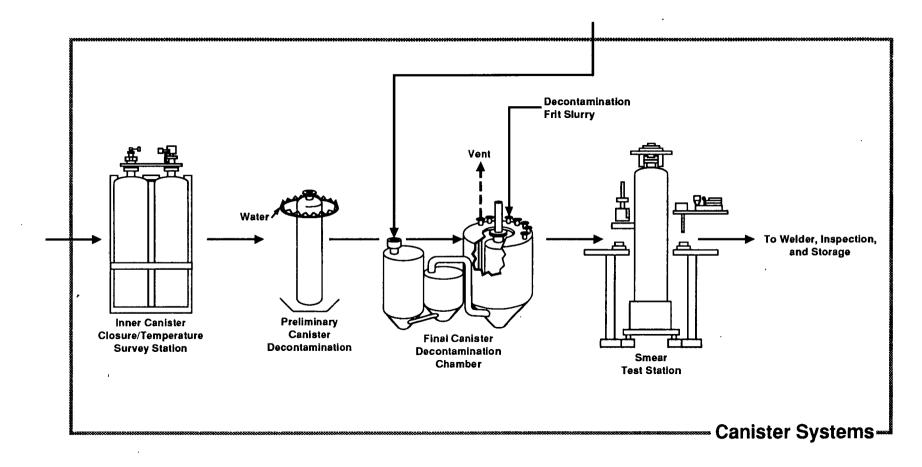

3.0 Canistered Waste Form 4.0 Quality Assurance

- Free Liquids
- Gases
- Explosives, pyrophorics, combustibles
- Organic materials
- Fill height
- Surface contamination
- Heat generation
- Maximum dose rate
- Chemical compatibility
- Subcriticality
- Weight, length, diameter, overall dimensions
- Drop test
- Handling features

Process Overview


- Receive pretreated high-level and transuranic waste slurries
- Incorporate radioactive waste components into a vitrified borosilicate glass
- Seal vitrified waste in stainless steel canisters
- Provide interim storage of filled canisters until shipment for disposal at a federal repository
- Size the plant for 100-kg/h glass production

HWVP Glass Production--Process Flow Schematic Diagram


9201130 WEBER/NUCLEAR/WASTE/BOARD-6

Hanford Waste Vitrification Plant Contribution of Major Process Stream Components to HWVP Glass Composition

HWVP = Hanford Waste Vitrification Plant 9201130 WEBER/NUCLEAR/WASTE/BOARD-7

Hanford Waste Vitrification Plant HWVP Filled Canister Processing

79205071.1

Hanford Waste Vitrification Plant Approach for WFQ Compliance

- Adapt technology and design applications from the West Valley Demonstration Project (WVDP) and especially the Defense Waste Processing Facility (DWPF)
- Control glass properties by controlling glass composition
 - Composition variability study (CVS) property correlations
 - Qualified composition region
 - Feed processibility assessment
 - Process/product composition control models

Hanford Waste Vitrification Plant Approach for WFQ Compliance (cont)

- Perform confirmation testing
 - Scaled testing
 - DWPF Project experience
 - HWVP testing
 - HWVP hot production

Application of DWPF and WVDP Technology and Design to Support HWVP WFQ

Direct application to support WFQ compliance

- 2.1 Canister Material
- 2.2 Canister and Fabrication Closure
- 2.3 Canister Identification and Labeling
- 3.6 Removable Radioactive Contamination on External Surfaces
- 3.11 Dimensions
- 3.12 Drop Test
- 3.13 Handling Features

Application of DWPF and WVDP Technology and Design to Support HWVP WFQ (cont)

Adaptations of methodology to support WFQ compliance

- **1.1 Chemical Composition**
- **1.2 Radionuclide Inventory**
- **1.3 Product Consistency**
- 1.4 Phase Stability
- 3.1 Free Liquid
- 3.2 Gases
- 3.3 Explosives, Pyrophoricity, and Combustibility
- 3.4 Organic Material

Application of DWPF and WVDP Technology and Design to Support HWVP WFQ (cont)

Adaptations of methodology to support WFQ compliance (cont)

- 3.5 Fill Height
- 3.7 Heat Generation
- 3.8 Maximum Dose Rates
- 3.10 Subcriticality

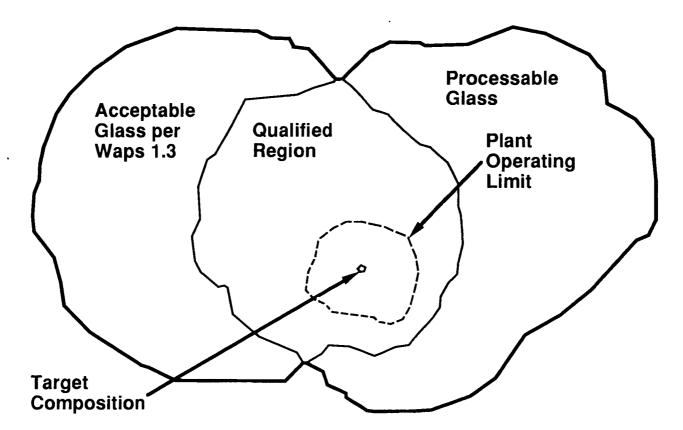
Control Glass Properties by Controlling Glass Composition

Product composition control is a significant contributor to compliance strategy of the following Waste Acceptance Preliminary Specifications:

- 1.1 "Glass Composition and Phases"
- 1.2 "Radionuclide Inventory"
 - 3.7 Heat Generation
 - 3.8 Maximum Dose Rate
 - 3.10 Subcriticality
- 1.3 "Product Consistency"
- 1.4 "Chemical and Phase Stability"

Control Glass Properties by Controlling Glass Composition (cont)

HWVP CVS

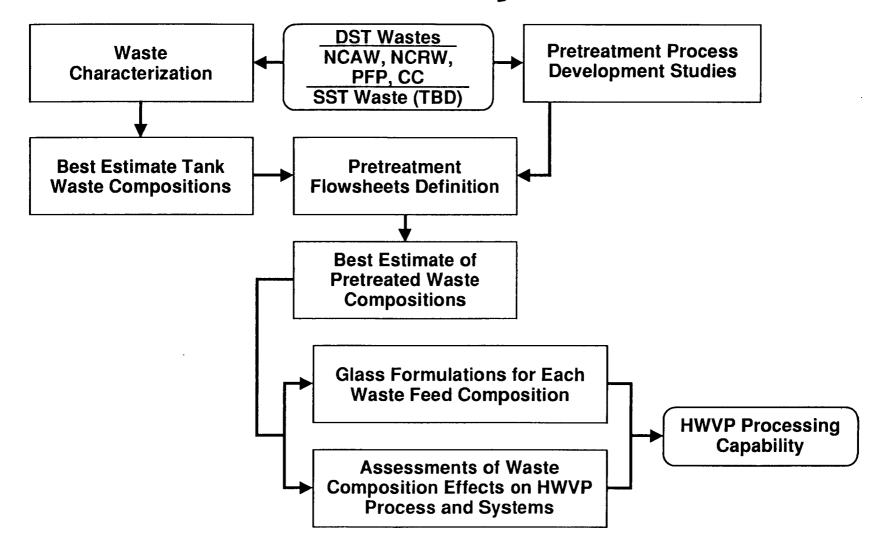

- Correlates glass properties to glass composition using:
 - Ten major oxide components
 - Multi-component constraints
- Determines qualified composition region per property constraints for:
 - Liquidus Electrical conductivity
 - Viscosity Product Consistency Specification (1.3)

Control Glass Properties by Controlling Glass Composition (cont)

HWVP CVS (cont)

- Determines overall envelope of acceptable glass compositions
- Provides basis for optimizing frit compositions

Schematic of Qualified Composition Region



79205071.4

Hanford Waste Vitrification Plant Feed Processibility Assessment

- Structured to:
 - Systematically assess most current feed characterization data
 - Evaluate relationship of projected feed characteristics to HWVP design basis
 - Project glass formulations and waste loadings based on CVS models
 - Assess specific plant process streams for compatibility with design
 - Integrate vitrification feed constraints with pretreatment capability

Hanford Waste Vitrification Plant Waste Processibility Assessment

Feed Processibility Assessment (cont)

- Double-shell tank wastes
 - Initial assessments have been completed for four defined high-level waste types:
 - Neutralized current acid waste
 - Neutralized cladding removal waste
 - Plutonium Finishing Plant waste
 - Complexant concentrate waste
- Single-shell tank wastes
 - Assessment work has recently started for initial candidates

Projected HWVP Feed and Frit Compositions for Double-Shell Tank Waste Types

Nonvolatile	Wt% of total nonvolatile oxides					
oxides	NCAW	CC	PFP	NCRW		
	Waste					
SiO,	0.4	69.1	4.7	6.6		
B ₂ O ₃			0.3	1.1		
Na ₂ O	21.4	9.9	4.3	0.3		
Li,Ō						
CaO	0.8	0.3	0.3	0.4		
MgO	0.2	0.2	0.3	0.2		
Fe ₂ O ₃	28.2	1.1	3.2	0.6		
Al ₂ O ₃	9.0	11.4	75.2	35.2		
ZrO,	15.1		0.2	49.6		
Others	24.9	8.0	11.5	6.0		
	Frit					
SiO ₂	73.6	3.9	57.6	57.6		
B_2O_3	19.6	77.7	31.5	31.0		
Na ₂ O						
Li2Ō	6.8	18.4	11.0	11.5		
CaO						
MgO			<u> </u>	<u> </u>		

CC = Complexant concentrate

NCAW = Neutralized current acid waste

NCRW = Neutralized cladding removal waste

PFP = Plutonium Finishing Plant

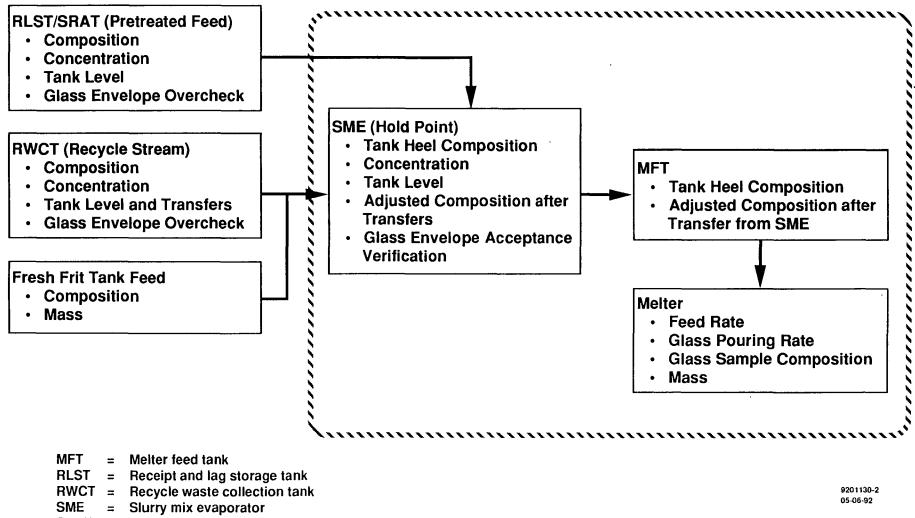
9201130 WEBER/NUCLEAR/WASTE/BOARD-21

Projected HWVP Glass Compositions and Attributes for Double-Shell Tank Waste Types

Attribute	NCAW		PFP	NCRW
Waste loading (%) ²	26	64	22	22
E 1150 (S/cm)	0.34	0.34	0.34	0.34
B release (g/m²)/7 days ³	4.6	5.0	0.2	1.0
Glass T (6 Pa•s) (°C)	1,100	1,100	1,100	1,100
Nonvolatile oxides, wt%				
SiO ₂	50.0	52.2	42.8	43.3
B ₂ O ₃	12.8	17.5	22.0	21.9
Na ₂ O	8.3	10.4	2.6	1.5
Li ₂ O	4.4	4.2	7.6	8.0
CaO	0.3	0.2	0.1	0.1
MgO	0.1	0.2	0.1	0.1
Fe ₂ O ₃	8.8	0.9	1.0	0.2
Al ₂ O ₃	3.0	8.2	20.5	9.6
ZrO ₂	4.7			13.4
Others	8.0	6.2	3.4	1.9

¹Compositions listed are for CC contained in 200 East Area tanks. ²Waste loading reduced 5% below maximum to allow flexibility for processing.

³Product consistency test results.


CC = Complexant concentrate NCRW = Neutralized cladding removal waste NCAW = Neutralized current acid waste PFP = Plutonium Finishing Plant

9201130 WEBER/NUCLEAR/WASTE/BOARD-22

Product Composition Control Modeling

- Glass properties modeling
 - Predictive modeling of glass properties versus glass composition (CVS work)
- Process mass balance modeling
 - Predictive modeling of glass composition based on process stream samples and mass balance model
 - Modeling will rationalize analytical errors and uncertainties of process measurements

Hanford Waste Vitrification Plant Process Data Sources for Mass Balance Modeling to Support Product Composition Control

SRAT = Slurry receipt and adjustment tank

Confirmation Testing

Nonradioactive Feed

Scaled systems

Bench (1/50) ۲

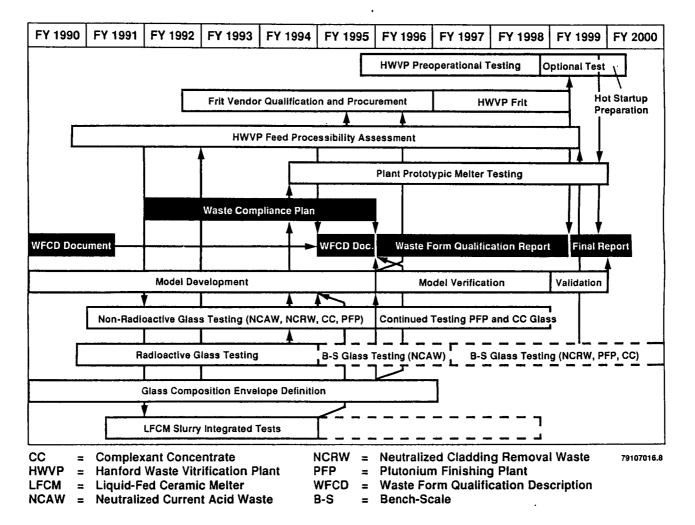
- **Pilot (1/10)** ۲
- **Demonstration (~1/2) DWPF experience** ۲

Full-scale system

- Simulated process tank(s)
- **HWVP** (operations testing ٠ and qualification runs)

Confirmation Testing (cont)

Radioactive Feed


Scaled systems

Full-scale system

- Laboratory crucible work
 HWVP hot production
- Bench-scale

- HWVP hot production experience (confirmation of compliance with certain acceptance specifications)
- DWPF Project experience
 DWPF hot production

Technology and Waste Form Qualification Overview Schedule

9201130 WEBER/NUCLEAR/WASTE/BOARD-27

Hanford Waste Vitrification Plant WFQ Summary

- HWVP gains technical benefits from DWPF and WVDP
- Hanford Site wastes will require unique process and WFQ approaches
- Control of glass properties will be achieved by:
 - Correlating glass properties to glass composition
 - Establishing a qualified composition (glass) region
 - Glass composition control via mass balance modeling
- Perform scaled and full-sized (HWVP) testing to establish and confirm bases for acceptance specifications compliance