
U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING SUBJECT: GLASSS TESTING AND COLLOUD EVALUATIONS PRESENTER: DR. JOHN K. BATES PRESENTER'S TITLE AND ORGANIZATION: SECTION HEAD, NUCLEAR WASTE PROGRAMS SECTION ARGONNE, ILLINOIS PRESENTER'S TELEPHONE NUMBER: (708) 252-4385				
FULL BOARD MEETING SUBJECT: GLASS TESTING AND COLLOID EVALUATIONS PRESENTER: DR. JOHN K. BATES PRESENTER'S TITLE AND ORGANIZATION: SECTION HEAD, NUCLEAR WASTE PROGRAMS SECTION ARGONNE NATIONAL LABORATORY ARGONNE, ILLINOIS PRESENTER'S SECTION HEAD, NUCLEAR WASTE PROGRAMS SECTION				
EVALUATIONS PRESENTER: DR. JOHN K. BATES PRESENTER'S TITLE AND ORGANIZATION: SECTION HEAD, NUCLEAR WASTE PROGRAMS SECTION ARGONNE NATIONAL LABORATORY ARGONNE, ILLINOIS PRESENTER'S SECTION HEAD, NUCLEAR WASTE PROGRAMS SECTION				
PRESENTER'S TITLE AND ORGANIZATION: SECTION HEAD, NUCLEAR WASTE PROGRAMS SECTION ARGONNE NATIONAL LABORATORY ARGONNE, ILLINOIS PRESENTER'S	SUBJECT:			
AND ORGANIZATION: SECTION HEAD, NUCLEAR WASTE PROGRAMS SECTION ARGONNE NATIONAL LABORATORY ARGONNE, ILLINOIS PRESENTER'S	PRESENTER:	DR. JOHN K. BATES		
	· · · · · • • · · · • • · · · · •	ARGONNE NATIONAL LABORATORY		
	· · · · · · · · · · · · · · · · · · ·	(708) 252-4385		

Background

Glass will be produced at Savannah River, West Valley, and Hanford and disposed of in a geologic repository

Objective

The objective of the joint testing and modeling program is to evaluate glass reaction under a range of conditions to provide source-term information that can be used for design and risk-assessment activities

Purpose

There are two purposes:

- Support start-up of the vitrification facilities
- Support repository licensing

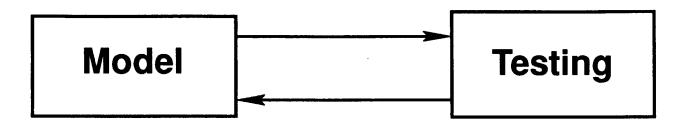
Approach

The approach fits well into the American Society of Testing Methods (ASTM) format for prediction of long-term material performance

Identify Materials

Glass of varying composition

- Defense Waste Processing Facility
- West Valley


Continual Refinements

Identify Credible Conditions

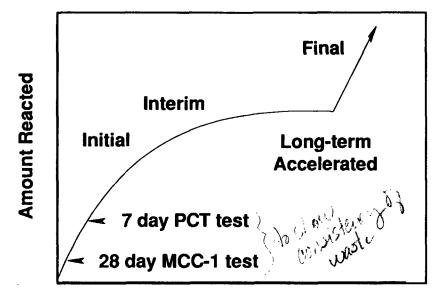
Unsaturated

Have to rethink basis premises

Approach

- Must be mechanistically based
- Cannot be empirical extrapolation
- Modeling cannot
 precede testing

- Response
- Accelerated
- Service condition
- Confirmation
- Validation


The variability of conditions anticipated for the Yucca Mountain site offers a challenge in designing and performing tests to evaluate waste-form performance

What Does Unsaturated Mean?

- Humid air
- Dripping water--intermittent flow
- Small amounts of standing water with very slow exchange

Approach

Glass reaction occurs in different stages

Reaction Progress

Source-term information includes

- Glass reaction rate
- Radionuclide release and distribution

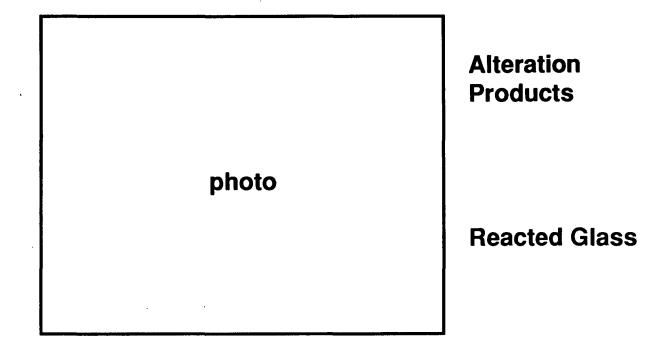
Must be evaluated at each stage

Results

The first step in the evaluation process has been to compile information related to glass

"High-Level Nuclear Waste Borosilicate Glass: A Compendium of Characteristics"

- Production and transportation
- Durability (testing)
- Modeling
- Analogues (natural, historical, commercial)


This is a review of world-wide information

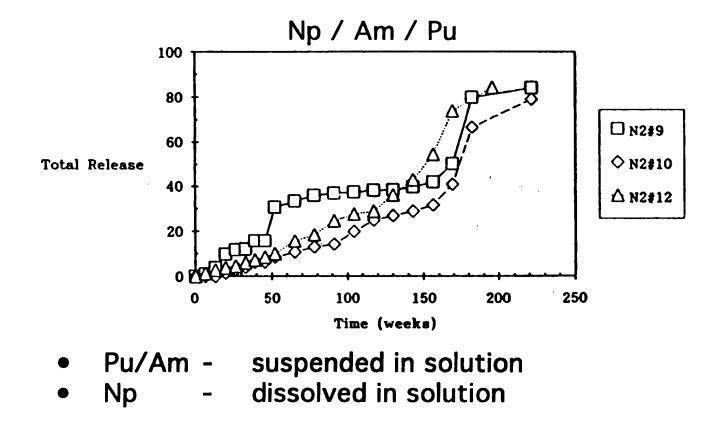
Results: Humid Air

In humid air, reaction occurs between a thin film of water and the waste form:

- The water becomes rapidly saturated, with respect to glass components, and secondary phases form. These secondary phases set the "steady-state" concentration levels and drive the reaction
- Temperature, relative humidity, and glass composition are important variables
- As reaction occurs, the glass ages and sorbs additional water from the air
- Eventual contact of aged glass with water provides source-term information

The surface of the vapor phase reacted glass is covered with alteration phases of unique structure and composition

However, under certain circumstances the formation of a stable phase may actually promote reaction


Results: Intermittent or Dripping Water

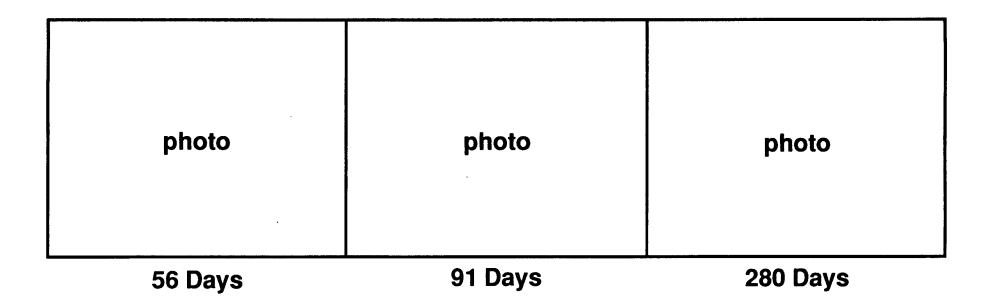
Tests have been conducted to examine many variables but focus on glass/canister

- As-cast and aged glass
- Actinide-doped and fully radioactive
- Varying flow rates
- Sensitized stainless steel
- Tests in progress for eight years

Results: Intermittent or Dripping Water

For as-cast, actinide-doped glass, the actinide release over long time-periods proceeds at a fairly continuous rate

Results: Intermittent or Dripping Water

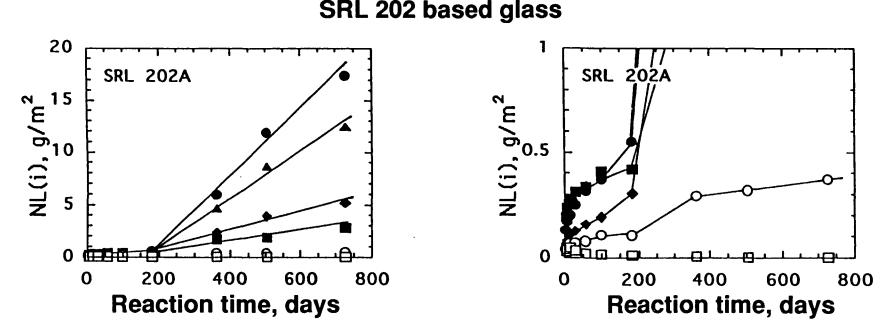

For aged, "fully" radioactive glass, the leachate becomes concentrated in cations and anions leached from the reacted glass, and all the actinides are dissolved in solution

	Solution Composition (ppm) As-Cast Aged	
Li	10	1,000
В	10	20,000
Na	100	40,000
Si	50	1,500
Cl	. 9	200
SO ₄ =	100	8,000
PO ₄ =	0	400

Sequential filtering through 30 A filters does not reduce significantly the Pu/Cm in solution

165 Glass

• The hydrolysis and <u>in situ</u> restructuring now result in a layer not attached to the glass surface


Results: Static Tests

Static tests are used to represent the filled canister reaction mode

- Batch tests
- Varying SA/V (3040 20,000 m-¹)
- 90°C
- EJ-13 groundwater
- Long-term
- Full suite of analyses (solution, colloids, layers)

Results: Static Tests

By performing the tests at high SA/V and long timeperiods, all the potential reaction stages are observed

The final rate can be greater than the forward rate, and within the envelope of acceptable glasses ranges from 0.04 to $\sim 1 \text{ gm/m}^2/\text{day}$

Results: Static Tests

The final rate is controlled by the leachate pH and the secondary phases that form upon the onset of rate increase

The secondary phases include

- Amorphous Si
- Clinoptilolite
- Clay
- Weeksite

Outer layer

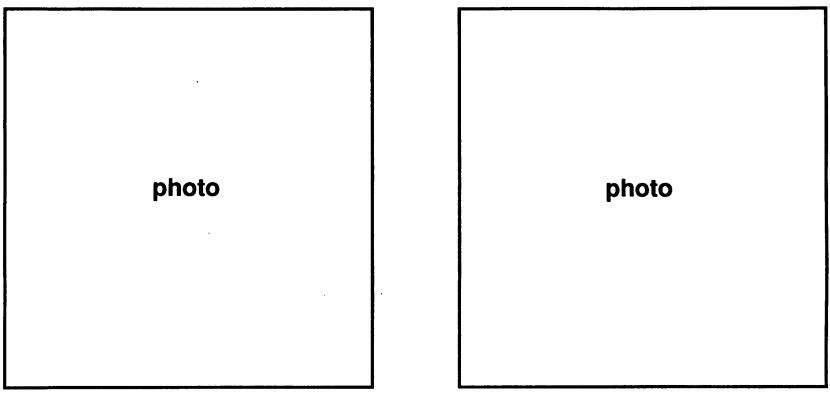
Reacted glass

Results: Colloids

To evaluate fully source-term data, the distribution of radionuclides in solution must be known

Background

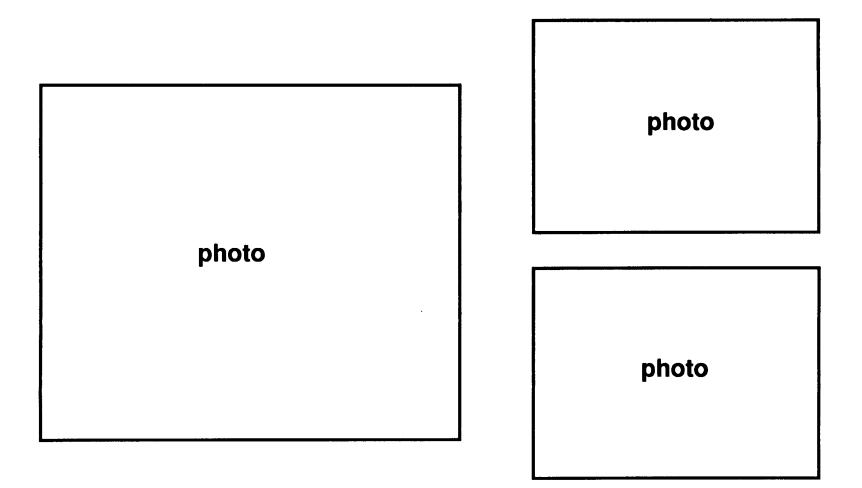
The types of colloids include


- Radiocolloids (hydrolysis)
- Pseudocolloids (sorption)
- Primary colloids (directly from waste)

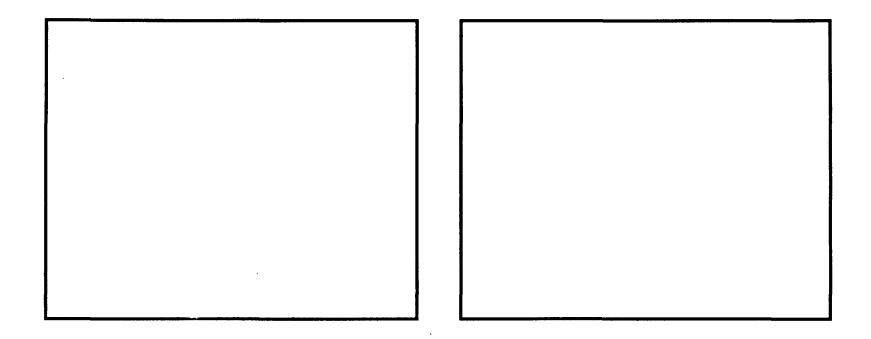
Colloids

Objectives

- Determine whether radionuclide-containing colloids are formed in waste-form reactions
- Characterize any colloidal material observed
- Characterize the transport behavior


The Nature and Size Distribution of Actinide-Bearing Phase in Solution is Dependent upon Glass and Test Condition

From solution


From glass

The Isolation and Identification of Actinide-Bearing Phases in Solution is Essential

SNGTJB5P20.125.NWTRB/10-14/16-92

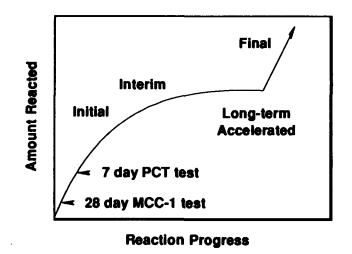
Spallation of Glass During the Drip Test Results in Increased Release

Mag = 400X

Spallation of reacted layer exposing base glass

Mag = 10,000X

Precipitation of clay onto newly exposed base glass


Colloids: Summary

As the waste form reacts, it strongly influences the distribution of radionuclides to solution. It is possible to identify the colloidal species, the size distribution, and the radionuclide content

- Primary colloids form directly from glass reaction due to spallation of material from the glass, contain concentrated Pu/Am phases, and remain suspended in solution
- Pseudocolloids form as glass dissolution products nucleate in solution (J-13 > DIW). The distribution in solution depends on the ionic strength of the leachate

Concluding Remarks

In terms of the reaction progress diagram, the source-term information depends where one is located on the diagram. This position depends on the glass/water contact conditions

- Humid air ages glass and affects subsequent radionuclide release
- Intermittent contact yields constant release rate with Pu/Am suspended in solution (as-cast) or dissolved (aged)
- Static yields final reaction rate after extended reaction time with actinides likely retained in the reacted glass