
 U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT		
	ASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING	
SUBJECT:	GLASS MODELING	
PRESENTER:	WILLIAM L. BOURCIER	
PRESENTER'S TITLE AND ORGANIZATION:	GEOCHEMIST LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CALIFORNIA	
PRESENTER'S TELEPHONE NUMBER:	(510) 423-3745	
PLA	ZA SUITE HOTEL • LAS VEGAS, NEVADA OCTOBER 14 - 16, 1992	

Glass Waste-Form Testing: Activities

- Site-specific testing
 - Saturated
 - Unsaturated (drip)
 - Vapor phase
- Model development
- Model development testing
 - Rate constant
 - Affinity term
- Incorporate outside information

Glass Modeling: Status August 1990

- Glass dissolution rate primarily controlled by solution composition (affinity effect) as opposed to diffusion/ transport control
- Simple mechanistic model developed in EQ3/6 code and successfully applied to a variety of glass dissolution tests
- Long-term rate control is related to saturation state of surface alteration layer, not glass
- Need for experimental program to provide model
 parameters independent of site-specific/validation test

Glass Dissolution Model

Dissolution of gel layer controls glass dissolution rates

Affinity Control of Glass Dissolution Rate

Rate = Surface area x Rate constant x Affinity term

- Rate constant is a function of temperature, pH, and solution composition
- Affinity term has form (1-(Q/K)^m)ⁿ where m and n must be determined experimentally
- Q is activity product for dissolving solid; K is equilibrium constant for dissolving solid

Current Models: Major Limitations

- Use model parameters as regression parameters in fitting experimental data
- Incomplete accounting for effects of solution chemistry on glass dissolution behavior
- Do not explicitly include effects of glass composition
- Do not account for glass/water interface surface chemistry

Affinity vs. Diffusion Rate Control

Status of Experimental Program to Provide Model Parameters

- Flow-through tests of 3 SRL glasses and simple analog glasses as a function of pH and temperature
 Provide T and pH dependence of rate constant
- Completed test series of SRL-202 glass in Ca, Mg, Al, B, and Si-doped buffers
 - Provide interpretable information on effects of dissolved cations on dissolution rate under controlled conditions
- Measured SRL-165 analog glass dissolution rate in closed system from 100-250°C and used to define affinity term
- Beginning to systematically examine glass compositional effects on glass durabilities with flow-through experiments

Simple vs. Complex Glass

Temperature and pH Dependence of Glass Dissolution Rate

Dissolution Rate Dependence on Silica Concentration (WV205 Glass)

SNGMWB5P10,125.NWTRB/10-14/16-92

Modeling Applications

- Analysis of Surface Area/Volume* time scaling of experimental results
- Analysis of affinity control of glass dissolution rate

Application: Surface Area/Volume* (SA/V*) Time Scaling

- SA/V* time scaling follows from observations that dissolution rate is proportional to surface area and controlled by solution composition
- SA/V* time scaling is not observed for most experiments. Why not?
- Simulate experiments over a range of SA/V ratios and scale according to SA/V* time

Surface Area/Volume (SA/V) Effects: Experimental Data

SNGMWB5P13.125.NWTRB/10-14/16-92

SNGMWB5P14.125.NWTRB/10-14/16-92

Surface Area/Volume* (SA/V*) Time Scaling: Conclusions

- Rapid initial ion exchange of outer 50nm of glass surface is responsible for lack of SA/V* time scaling
- Use of high SA/V conditions to accelerate tests must be interpreted in context of functional relationships found in model results

Application: Affinity Control

- Two questions:
 - 1. What is functional form of affinity term?
 - 2. What is solid controlling dissolution rate?
- Procedure:
 - 1. Extract release-rate data from well-characterized experiments
 - 2. Perform simulation using variety of reasonable solids as rate-controlling phases
- Find simple function that best fits release rate as function of time

CSG Glass (100° C)

SNGMWB5P17.125.NWTRB/10-14/16-92

Silica Release Rate

Dissolution Affinity

SNGMWB5P19.125.NWTRB/10-14/16-92

Affinity Control: Conclusions

- Thermodynamic properties of bulk anhydrous glass do not control glass dissolution rate
- Glass dissolution rate consistent with control by hydrous surface layer
- Model will be further constrained with input from multiple independent test results with careful characterization of surface layers

Conclusions

- Have a mechanistic understanding of how glass
 dissolves but have not yet quantified critical parts of it
- The model is generic; not specific to the Yucca
 Mountain site
- The model is designed to be interfaced to mechanistic models for durabilities of other repository materials
- Understanding of glass dissolution is applicable to parallel studies of other waste-forms and repository materials