Source Term Model for USNRC Iterative Performance Assessment, Phase 2

Richard Codell, USNRC Tae Ahn, USNRC John Walton, CNWRA

Nuclear Waste Technical Review Board Las Vegas, Nevada October 14-15, 1992

Introduction

- Temperature Model
- Waste Package Failure Model
- Liquid Radionuclide Release
- C-14 Gaseous Release
- Kinetic Effects
- Disruptive Releases
- Support for Source Term Modeling

Canister Temperature Model

- Semi-analytical, conduction only
- Uniform heat transfer properties
- Heat load can vary in time and space
- Mainly used to determine time to canister failure

Ł

× .

ş

,

Schematic illustration of the use of corrosion, pitting, and repassivation potential to predict the performance of a container

and the second second

ł

Release Rate Models in SOTEC

- 1. Dissolved and Colloidal
 - a. Advective release
 - b. Diffusive release
 - c. Kinetic effects and colloids
- 2. C-14 Gaseous Release
 - a. Metal oxide
 - b. Cladding oxidation
 - c. Grain and gap release
 - d. Fuel oxidation

Dissolved Radionuclide Release Model

Released but undissolved inventory

∿ н,Ак

EVIDENCES FOR KINETIC EFFECTS

- MULTI-PHASE FORMATION

1010

- PARAGENESIS OF SECONDARY PHASES
- UNSTABLE SECONDARY PHASES
- NONPROTECTIVE SECONDARY PHASES
- Environmental Changes

Releases of C-14 from Spent Fuel

• Initial cladding oxide and crud

94

- Grain boundary and cladding gap
- Zircal oy oxidation
- Oxidation of fuel

Plutonium Releases

• Pu and Am dominate dose potential, but

and the second second

- Very insoluble Largely ignored in other performance assessments
- Kinetic effects may play an important part in releases of Pu and other actinides
- Potential concentrations of Pu taken from data by Nitsche et al, and Wilson et al, E-5 to E-9 M
- Speciation calculations show range reasonable at 25°C (not at 85°C)

FAST RELEASE OF RADIONUCLIDES FROM HLW FORMS

- COLLOID
 - Real Colloid
 - PSEUDO-COLLOID
- SUPERSATURATION
- SPECIES
- EFFECTS OF SURFACE AREA
- EFFECTS OF RADIATION, STRESS, PREFERENTIAL DISSOLUTION AND MICROBE

.

Fuel Temperature vs. Canister Skin Temperature

Location of Radionuclides in Spent Fuel and Potential Releases of C-14 (Apted, el. al., 1989)

.

ţ

,

Adjusted	¹⁴ C	Content	in	Spent	Fuel	(Ci/MTHM)
		(After	Par	k, 199	2)	

Туре	Burnup Mwd/MTHM	UO2	Zirc.	Hard- ware	Total
BWR	35,000	0.69	0.48	0.13	1.3
PWR	40,000	0.73	0.22	0.26	1.21
Average		0.72	0.31	0.21	1.24

Model for Release of C-14

sector and the sector of the s

- C-14 is in a reduced state initially in fuel
- C-14 oxidizes to carbon dioxide as fuel oxidation front passes
- C-14 dioxide diffuses out through same two layers as oxygen diffuses in
- C-14 released quickly from grain boundaries, cladding/fuel gap, and initial zirc. oxide
- Minor releases from oxidation of cladding and other metals

Time to Diffuse Most C-14 From Outer Cladding Oxide

T°C	t ₂ , yrs E=19 Kcal/mol	t ₂ , yrs E=25 Kcal/mol
350	0.00091	0.00091
300	0.0035	0.0053
250	0.017	0.043
200	0.12	0.55
150	1.3	13
100	27	690
75	169	7800

Fuel Oxidation Model Assumptions:

.

- No oxidation until canister fails
- No protection of fuel by cladding
- Oxygen diffuses through two layers:
 - outer layer representing grain boundaries
 - inner layer representing oxidized fuel
- Oxide is U3O7 stochiometrically
- Oxygen concentration zero at inner boundary
- Oxygen profiles in layers are at steady state

Shrinking Core Model for Fuel Oxidation

۲

1

-

1.7

•

Parameter Identification and Model Verification

- Grain diameter from micrographs of fuel (20 microns)
- Outer layer diameter taken as fragment size (2mm)
- Weight gain from thermal gravametric analysis and dry bath experiments between 110 and 250 degrees C (PNL)
- Activation energy and diffusion coefficients adjusted for best fit to oxidation data on fuel fragments in 8 temperature ranges
- Little data found on C-14 releases from fuel oxidation

.

Transient Oxidation Effects

4,

Not included in fuel oxidation model

Increase in Surface Area (liquid and Gas Models)

- STORED ENERGY

ţ

$$\epsilon = \frac{E_{\rm r}}{2 (1-2 \nu)} \left(\frac{\Delta V}{3 V}\right)^2$$

 $E_{y} : Young's Modulus$ v : Poisson's Ratio $\Delta V : Volume Change$ V : Volume

- CONVERSION TO FRACTURE ENERGY

Note that the second second

- Intrusive Volcanism
 Dike 1000 4000 m long, 1-10 m wide
- Extrusive Volcanism
 - Cindercone, 25 100 m radius
- Drilling intercepts repository
 - Brings up contents of waste package
 - Brings up contaminated rock

COMPARISON OF INVENTORY TO CURRENT EPA 10,000-YEAR CUMULATIVE RELEASE LIMIT AT ACCESSIBLE ENVIRONMENT AND NRC 10CFR60.113 MAXIMUM RELEASE RATES FROM THE ENGINEERED BARRIER SYSTEM*

			1	IRC POST-
			EPA 10,000-YEAR CC	NTAINMENT
	GASEOUS	INVENTORY AT	RELEASE LIMIT CI RE	
	RADIONUCLIDES	1,000 YEARS (Ci)	(ANNUAL AVG. CI/YR) FROM	M EBS (Ci/YR)
-	14C	62,000	6,200 (0.62) (10)	**1.07
	120	1,950	6,200 (0.62) (.31)	**1.07
	SEMI-VOLATILE RADIONUCLIDES			
	ⁿ Se	25,050	62,000 (6.2) (.4)	**1.07
	**T c	806,000	620,000 (6.2) (1.3)	8.06
	¹³⁵ C8	21,390	62,000 (6.2) (.34)	**1.07

*BASED ON 62,000 MTHM SPENT FUEL **NUCLIDES FOR WHICH THE MAXIMUM RELEASE RATE , _ _ _ REATER THAN 1 X 10* PER YEAR INVENTORY BECAUSE OF THEIR SMALL INVENTORIES

VAPOR PRESSURES

ч

~ +

•

SPECIES	VAPOR PRESSURE (ATMOSPHERES)			
	100°C	200°C		
CO2	> 2,000	> 12,000		
l ₂	6 x 10 ⁻²	3.7		
SeO ₂	9.1 x 10⁴	5.4 x 10 ⁻²		
Tc ₂ O ₇	1.2 x 10 ⁻⁴	3.7 x 10 ⁻²		

(FROM LANGE'S HANDBOOK OF CHEMISTRY, 13TH EDITION, 1985)

(Park. 1991)

NRGIVK5P 125 NWTRB/6-22-91

Biggest Information Needs for Source term

- Integrity of canisters?
- How does water get into canisters?
 - drying of rock

- saturation and rewetting
- flow rate back to canisters
- How does water interact with fuel?
- Does cladding offer protection?
- Are kinetic effects important? Will colloids form as fuel disintegrates, and are they important for transport of randionuclides?

a Norman and a second second

Work at NRC and CNWRA in Support of Source Term

- EPSPAC Detailed Source Term Model
- Natural Analogs
 - Alligator Rivers
 - Pena Blanca
 - Santorini
 - Cigar Lakes
 - Oklo
- Kinetic Effects of Fuel Dissolution
- Thermodynamic Properties of Actinides in High-Temperature Aqueous Solutions
- Metallic Phases in Spent Fuel