OFFICE OF (U.S. DEPARTMENT OF ENERGY CIVILIAN RADIOACTIVE WASTE MANAGEMENT
NUCLEAR W	ASTE TECHNICAL REVIEW BOARD
SUBJECT:	COMBINING PROCESSES: AN ENGINEERED BARRIER SYSTEM SOURCE TERM
PRESENTER:	DR. WILLIAM J. O'CONNELL
PRESENTER'S TITLE AND ORGANIZATION:	TASK LEADER, WASTE PACKAGE PERFORMANCE ASSESSMEN LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CA
PRESENTER'S TELEPHONE NUMBER:	(510) 422-8789
	PLAZA SUITE HOTEL LAS VEGAS, NEVADA OCTOBER 14 - 16, 1992

This Morning's Talks by DOE Contractors Focus on the Use of the Detailed Models and Data in Systems-Level Applications

Two Trains of Analyses were Carried out in DOE's TSPA-91 for Complementary Purposes

• Today's talks by LLNL, PNL, and SNL focus on the source term

A Source Term Requires Single-Package Behavior and Integration over Packages

Desired Features of a SourceTerm for Total System Performance Assessment (TSPA)

Simple

- Has the major features of the process results
- Applicable over a wide range of parameter values
- Uses the total system parameters, where appropriate (q_a, q_o)
 - Percolation flux (q_a)
 - Saturated hydraulic conductivity of porous rock matrix (q_o)

Subsystems Act as Boundary Conditions and/ or Barriers in the Base-Case Aqueous Release

At the Core of the Engineered Barrier System (EBS) are Single Waste Packages with Different Local Environments

Some Issues in the Source-Term Modeling Process

- Linking of processes
 - On single waste packages
 - On area-wide set of waste packages
- Areal averages/localized variations
- Correlations
 - Among inputs
 - Of outputs with inputs

For Single Waste-Package Response, the PACE-90 Working Group 2 Focused on the Processes Near the End of the Causal Chain

Earlier processes are treated by input data structures

Within a Single Waste Package or a Set, Multiple Alternatives Must be Modeled

EBS transport processes	_	Radionuclide chemical types		Source location properties
Diffusion Flow-through Bathtub	x	High solubility	x {	Rapidly accessible location (cladding surface, cladding gap)
Gaseous only		Gas		Matrix location

For each important alternative, an area-integrated result was calculated

First the Distribution Was Determined of Local Environments for the Release Rate Processes

TH: Time history q_a : Average percolation flux $Var(q_a)$: Spatial variance of q_a q_o : Saturated hydraulic conductivity of the porous rock f_s : Fraction of boreholes with seepage flow f_s : Fraction of boreholes with rubble

Areal Averages — Localized Variations

- The simplified source term for TSPA-91 treated local-environment variability in
 - Hydrology
 - Rock mechanics (for a diffusion pathway)
 - Container breach times
- Within a waste package, a fraction of the spent fuel is wet at any time. The simplified model assumed this fraction is a constant

Some Specific Features of the Mountain-Wide Base Case Hydrology for TSPA-91

- The probability distribution of average percolation flux covers a wide range (0 mm/y - 7 mm/y and up)
- As average flux increases, the local environments are expected to change:
 - More waste packages get wet
 - The advective flux at wet packages increases
- The average percolation flux influences both the source term and the far-field transport
- Does the source term change smoothly or as a step function versus the average percolation flux?

Some Features of the Local-Environments Model

- For a waste package to have water contact, it requires rubble in the borehole, or seeping water, or both
- Local percolation flux is lognormally distributed, with repository-wide average equal to the average percolation flux
- Local seepage or fracture flow occurs if the local water flux exceeds the saturated hydraulic conductivity of the matrix
- Rubble and seepage occurrence are independent
- The effective diffusion coefficient in the rubble depends on whether seepage is present

SNCPWOV1.125.NWTRB/10-14/16-92

Output of the Model: A Distribution of Local Environments

- f_r: Fraction of waste-package boreholes with rubble
- **f**_s: Fraction of waste-package boreholes with seepage

Fraction of <u>waste package</u>	Type of <u>water contact mode</u>				
f _s • (1 - f _r)	Advective, with a distribution of local water flux				
(1 - f _s) • f _r	Diffusive with low diffusion coefficient				
f _s • f _r	Combined advective and diffusive with higher diffusion coefficient				
(1 - f _s) • (1 - f _r)	None				

Geochemistry Variation is a Fertile Field for Future Modeling

- Local variability in geochemistry was not treated
- Within a waste package, the chemistry will be dependent on the hydrology, specifically on the following:

Moles Ca /y Moles U reacted /y		Water influx/y x Conc. of Ca			
	Ξ	Bulk Surface x wet	Grain surface Bulk surface	X	Reaction rate

Organization of the Release Rate Calculation

- Top level
 - Radionuclide type
- Second level
 - Radionuclide location
- Third level
 - Water contact/transport mode
 - * Diffusive moist
 - * Diffusive wet plus advective in parallel
 - * Advective, no diffusion
 - * No liquid pathway

The Release-Rate Calculation is Grouped by Water-Contact mode

SNCPW019.125.NWTRB/10-14/16-92

For Each Water-Contact Mode, the Release Rate TH Depends on Containers, on Waste Form/Geochemistry, and on Hydrology/Transport

Earlier Work Found the Release-Rate Curves Had a Few Key Characteristics

The simplified source-term model will calculate key parameters of the output curves.

Release of Low-Solubility Np-237 was of Low Amplitude, Long Duration

Release of Tc-99 from Wet Waste Packages was of Relatively Short Duration and High Amplitude

For Simplicity and for Focus on the First-Order Effects, Assumed a Generic Shape of the Time Histories

For highly soluble radionuclides:

- Generic shape -- main effects only
- Parameters guided by sensitivity analysis
- Assume a time convolution gives same shape, new parameters

Shape for Solubility-Limited Radionuclides

At the Center of the Release Model are the Single-Process Time Constants

Key Uncertain Parameters

Total system hydrology:

- Average percolation flux
- Variance across the repository
- Saturated hydraulic conductivity of rock matrix

Waste package hydrology:

- Fraction of local advective flux getting into waste package
- Fraction of fuel surface wetted

Rock mechanics:

- Fraction of boreholes with rubble
- Fraction of spent fuel exposed to diffusion

Diffusion hydrology and geochemistry:

- Effective diffusion coefficients
- Retardation factors

Geochemistry/waste-form interaction

- Fuel matrix alteration rate
- Element solubilities

Containers:

Container failure rate

Area-Averaged Water Flux Affects Both Source Term and Far-Field Transport --Correlations

- A trend in average water flux will introduce a correlation of source term strength and transport speed, and a de-facto correlation of these with transport path length to the water table
- Geochemical trends would probably also yield correlated changes in processes, but this was not explicitly modeled

Impacts of Hydrological Spatial Variability While Assuming a Matrix Flow Model

Assumptions:

- Lognormal distribution in space for the water flux
- Local excess flux goes into seepage flux
- Random spatial distribution of rubble occurrence

Results:

- Even a few % of waste packages with seepage flux will contribute most of the source term
- Hydrology-induced correlations among:
 - Container breach
 - Radionuclide release rate
 - Groundwater travel time to the water table

Impacts of Hydrological Spatial Variability, While Assuming a Fracture-Flow Model

Assumptions:

- A set of flows distributed in space and in amplitude; non-flowing zones have moist rock
- Random spatial distribution of rubble occurrence

Results are qualitatively similar to the matrix-dominated case