EPRI

SOURCE TERM IN THE EPRI PERFORMANCE ASSESSMENT

Presented by Robert A. Shaw EPRI

To The Nuclear Waste Technical Review Board Las Vegas, NV. October 15, 1992

EPRI/NPD *

EPRI PERFORMANCE ASSESSMENT MODEL

- Calculates radionuclide releases to accessible environment
- Probability-based using logic diagrams to calculate CCDF's
- Uses individual experts to develop nodes on logic tree
- Relies on more detailed models and analyses
 - For controlling mechanisms and parametric values

HLW/SFS '

Figure 16-1. CCDFs for 12 nuclides released by gaseous and aqueous pathways.

Figure 15-13. Master logic tree.

Figure 16-6. Sensitivity of CCDF for ²³⁷Np to repository temperature.

DISSOLUTION & TRANSPORT OF WASTES

• Release modes

EPRI/NPD

- Dry: no release pathway
- Wet drip: container fills to penetration
- Moist: diffusive & advective pathways
- Chemical constraints on release
 - Dissolution (alteration, reaction) rates
 - Radioelement solubility limits

HLW/SFS

10/92

Figure 16-8. Sensitivity of CCDF for ²³⁷Np to selection of EBS.

- (

×* -

Figure 15-8. Logic tree node for engineered barrier system.

Figure 8-2. Three alternative curves showing temperatures at the outer surface of a waste emplacement hole as functions of time.

Table	8-2
-------	-----

SUMMARY OF TEMPERATURE SCENARIOS AND FRACTIONS OF REPOUTORY AREA FOLLOWING EACH TEMPERATURE CURVE

~

Scenario Probability Curve β Curve α Curve γ 0.6 0.1 0.9 1 0 2 0.3 0.9 0.1 0 3 0.1 0 0 1.0

.85.

Figure 16-9. Sensitivity of CCDF for ²³⁷Np to solubility and dissolution rate.

SOLUBILITY AND DISSOLUTION RATE

Figure 15-9. Logic tree node for solubility and dissolution rate.

.**n**^

Table 11-4

*

SOLUBILITIES OF RADIOELEMENTS, IN gm/m³

Element	Low	Moderate	<u>High</u>	
С	1.0	1.4	1.4×10^{2}	
Se	7.9×10^{2}	7.9x10³	5.5x10 ^s	
Тс	3.5x10 ⁻²	1.0×10^{2}	9.9x10 ^s	
Sn	1.3x10 ⁻⁴	3.2x10 ⁻³	2.2×10^{-2}	
Ι	1.0	3.9x10 ²	1.0x10 ^s	
Cs	1.2	3.9x10 ²	2.1×10^{3}	
Ra	1.0x10 ⁻⁵	4.0x10 ⁻⁴	0.1	
U ·	0.5	2.4	5.0x10 ¹	
Np	4.0x10 ⁻⁴	3.6x10 ²	7.2×10^2	
Pu	6.0x10 ⁻⁵	9.6x10⁴	4.3x10 ⁻¹	
Am	1.5×10^{7}	9.6x10 ⁻²	9.6x10 ⁻¹	
Cm	2.4x10 ⁹	9.6x10 ⁻²	9.6x10 ¹	

TABLE 11-2

ESTIMATED PERCENT OF TOTAL RADIONUCLIDE INVENTORIES WITHIN THE SEPARATE REGIONS OF SPENT FUEL (1)

Nuclides	<u>UO2 Matrix</u>	Gap (+ Grain <u>Boundary)</u>	<u>Cladding</u>	Surface Layer
C-14	35	1	63	1
Se-79	98	2		•••
Tc-99	98	2		•••
Sn-126	100	•••	•••	• * •
1-129	98	2		•••
Cs-135	98	2		•••
U-234	100	•••		
U-238	100			
Np-237	100			•••
Pu-239	100			
Pu-240	. 100			•••
Pu-242	100			
Am-241	100			•••
Am-243	100	•••		•••
Cm-245	100	•••	•••	•••

Figure 11-5. Schematic diagram of spent fuel showing different source regions with characteristic radionuclides (13).

Fractions of Repository in Different Environments for APD=57 kW/acre

	α	β	γ	δ	Total
Dry	.7	.09	.06	0	.850
MoistContin.	.01	.002	.03	0	.042
Wet-Drip	.02	.004	.02	0	.044
Episodic	.02	.004	.04	0	.064
Total	.75	.10	.15	0	1.0

Conduction-dominated p=0.5

High Permeability p=0.2

	α	β	γ	δ	Total
Dry	.32	.36	.07	0	.750
Moist- Contin.	.01	.01	.04	0	.060
Wet-Drip	.01	.015	.03	0	.055
Episodic	.06	.015	.06	0	.135
Total	.400	.400	.20 0	0	1.0

Water Mobile in Fractures p=0.3

					·····
	α	β	γ	δ	Total
Dry	.25	.04	.1	0	.390
Moist- Contin.	0	.025	.15	0	.175
Wet-Drip	.005	.03	.15	0	.185
Episodic	.045	.005	.2	0	.250
Total	.300	.100	. 60 0	0	1.0

SITE UNCERTAINTIES

A.

Infiltration

EPRI/NPD

10/92

- What is it at repository elevation?
- Degree of fracturing
 - Spacing, sizes, ...
- Coupling between fracture & matrix flow
- Permeability of fractures (connectedness)
- Lateral flow distribution
 - Impermeable layers

HLW/SFS

EPRI/NPD

PERFORMANCE ASSESSMENT MODELING ISSUES (continued)

- Detailed model to overview PA model
 - transfer function
- Levels of detail in overview models
- Incorporating probabilistic and deterministic aspects
- Cost and schedule implications

10/92