U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT			
NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING			
SUBJECT:	DISSOLUTION TESTING OF SPENT FUEL		
PRESENTER:	DR. STEVEN A. STEWARD		
PRESENTER'S TITLE AND ORGANIZATION:	TASK LEADER LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CALIFORNIA		
PRESENTER'S TELEPHONE NUMBER:	(510) 423-1767		
PLAZA SUITE HOTEL • LAS VEGAS, NEVADA OCTOBER 14 - 16, 1992			

Complexity of Spent-Fuel Dissolution Requires a Controlled Approach

- Results of previous data vary widely
- Semi-static tests allow precipitation; flow-through method does not
- Compare studies using UO₂ to spent fuel matrix dissolution
- Statistical experimental design is only way to understand effects of many variables on spent-fuel dissolution
 - Experimental design normally limits needed experiments to 32 and still understand variable interactions and confounding

Previous Data* Show > Million-Fold Variation in Dissolution Rate under Various Conditions

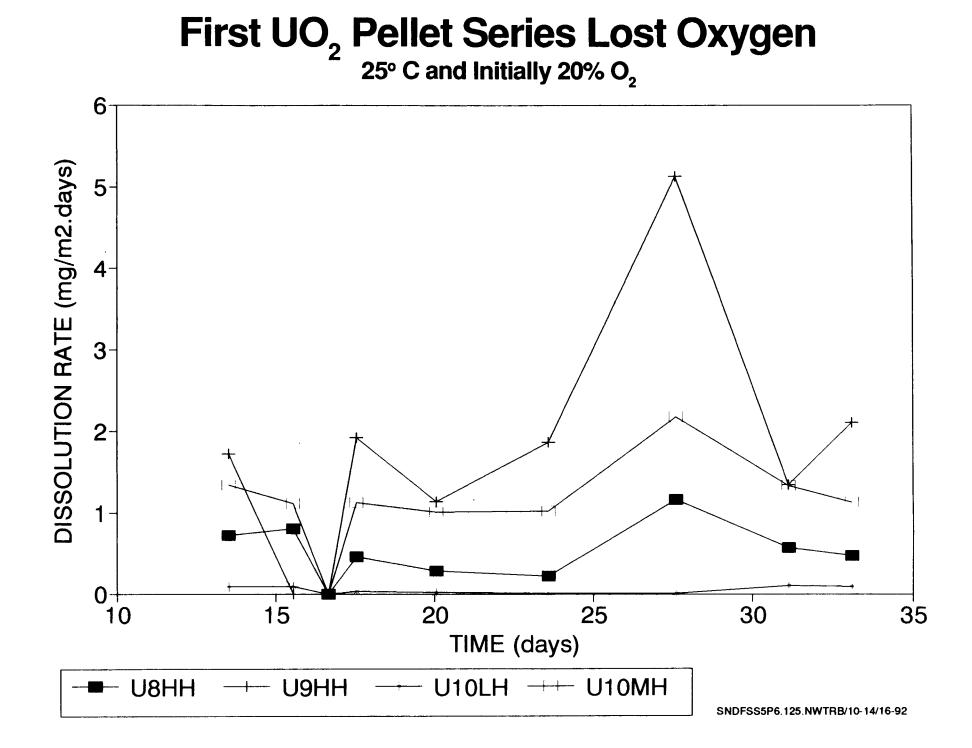
Controls are needed!!!

- UO₂ fuel matrix dissolution governs long-term soluble radionuclide release
- Bulk of fission product and actinide release controlled by UO, matrix dissolution rate
- Soluble radionuclides at gap and grain boundaries are released quickly

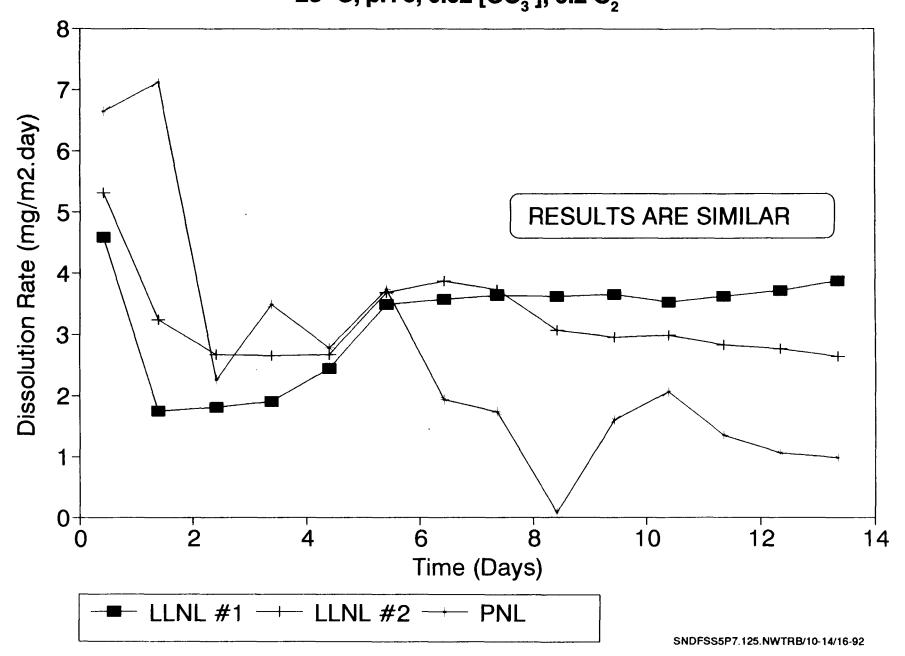
^{*} B. Grambow, SKB Technical Report 89-13, March 1989

UO₂ Fuel Matrix Dissolution Governs Long-term Soluble Radionuclide Release

- Bulk of fission product and actinide release controlled by UO, matrix dissolution rate
- Soluble radionuclides at gap and grain boundaries are released quickly

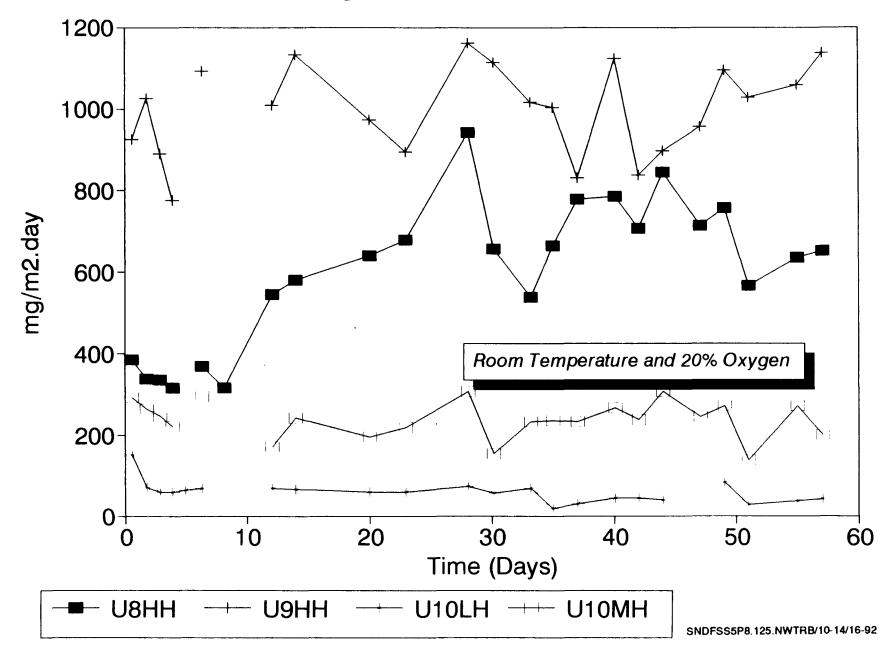

Flow-Through Method Overcomes Solubility Limitation

- High flow-rates prevent precipitate formation by staying in the unsaturated concentration regime
- First use on glass by Knause et al. at LLNL in 1986
- Refined at LLNL and PNL for glass and spent fuel

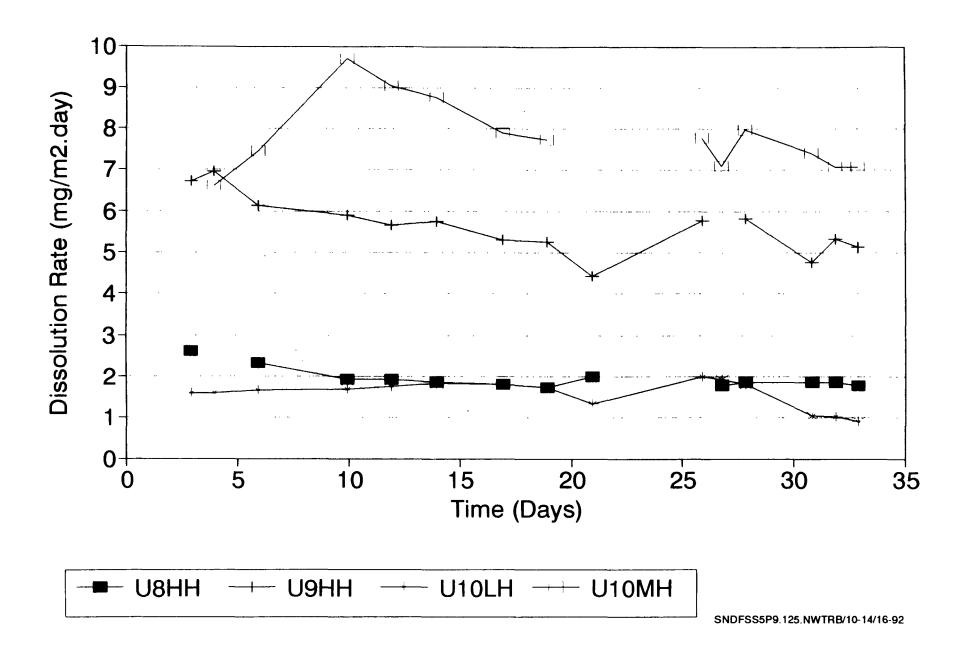

Knauss, K.G., and Wolery, T.J., Geochim. Cosmochim. Acta 50, 2481 (1986)

Measurements on UO₂ Dissolution are Important to Modeling

- Matrix dissolution can be defined
- Comparison with spent fuel will provide
 - Chemical effects of fission products on matrix behavior
 - Chemical effects of high radiation levels
 - Grain boundary dissolution of some fission products



UO₂ Powder Runs for PNL & LLNL Cells 25° C, pH 8, 0.02 [CO₃], 0.2 O₂


Surface Area may have Largest Effect

Pellet Fragments Cause High Dissolution

Polycrystalline Runs Gave Good Results

Room Temperature and 20% Oxygen

Temperature and CO₃ Have Greatest Effect upon PNL Spent-Fuel Dissolution Data at 20% O₂

- 1. $[u] = 1.65 + 1.41 (log[CO_3]) + 0.160T 0.0341 (log[H])$ $r^2 adj^* = 0.963$
- 2. $[u] = 1.97 + 1.41 (log[CO_3]) + 0.160T$ $r^2 adj = 0.969$
- 3. Full 6-term Quadratic Fit $r^2 adj = 0.918$
- 4. $\log [u] = 7.45 + 0.258 (\log[c]) + 0.142 (\log[H]) 1550/T$ $r^2 adj = 0.843$
- Simple two-term linear model (#2) gives best fit with data at 20% oxygen
- pH has little effect
- Desirable classic kinetic model gives poorer fit
- * Adjusted correlation coefficient accounts for degrees of freedom in fit W.J. Gray (PNL, H.R. Leider and S.A. Steward (LLNL), J. Nucl. Matls., (in press)

Averages of Current PNL and LLNL Dissolution Rates Show Smaller Variation than Historical Data

0.0002 atm $\leq P(O_2) \leq 0.2$ atm; $8.0 \leq pH \leq 11.1$

[carbonate] (M)	Rate (mg/m ² · day)			
Temp.(°C)	0.02	0.002	0.0002	
25	2.9 ± 1.6 (0.8 to 5.6)	3.3 ± 3.3 (1.2 to 7.8)	0.8 ± 0.6 (0.2 to 1.6)	
50		6.1		
75	11.5		8.6	

UO₂: large crystals, powder and pressed pellets (oxygen adjusted)

S.F.: powder

Indicated error is 1σ

Near-Term Plans

- Studies of expanded water chemistry and fuel attributes devised (10 variables)
- Existing test matrix (4 variables) used only carbonate as the reactive ion
- Additional major components of J-13 water will be tested
 - Si, Ca, SO₄, and Halide
- Reactor-type and fuel burnup level also explored
- UO₂ will be compared to different fuels with similar water chemistry

A Screening Study Will Determine Importance of the 10 Variables

- Statistical experimental design is used
- A fractional-factorial screening design with 32 experiments is sufficient to test importance of each variable
- A modeling design will be based on those screening results
 - This modeling design will take no more than 32 experiments, as well