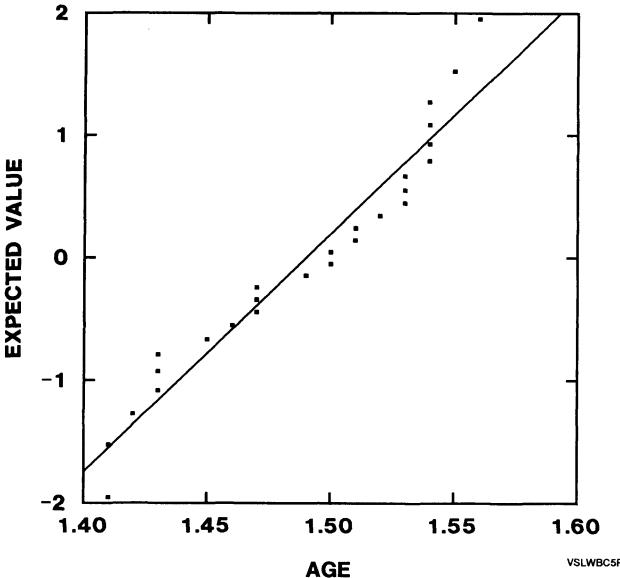
OFFICE OF	U.S. DEPARTMENT OF ENERGY CIVILIAN RADIOACTIVE WASTE MANAGEMENT
	VASTE TECHNICAL REVIEW BOARD CTURAL GEOLOGY & GEOENGINEERING
SUBJECT:	SUMMARY OF LATHROP WELLS STUDIES: PROGRESS AND FUTURE DIRECTION
PRESENTER:	DR. BRUCE CROWE
PRESENTER'S TITLE AND ORGANIZATION:	PRINCIPAL INVESTIGATOR, VOLCANISM STUDIES LOS ALAMOS NATIONAL LABORATORY LAS VEGAS, NEVADA
PRESENTER'S TELEPHONE NUMBER:	(702) 794-7096

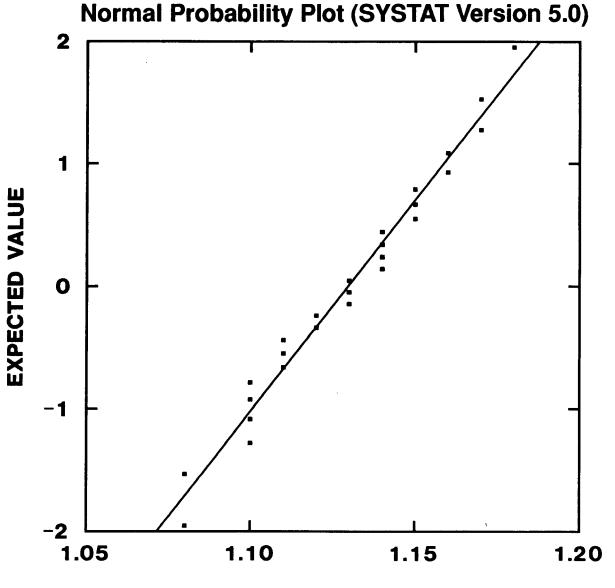
Presented series of overview talks

- Individual investigators
- New data, new interpretations
- Not done but progressing (pleased, even excited about results)
- Resolve differences with data it is working

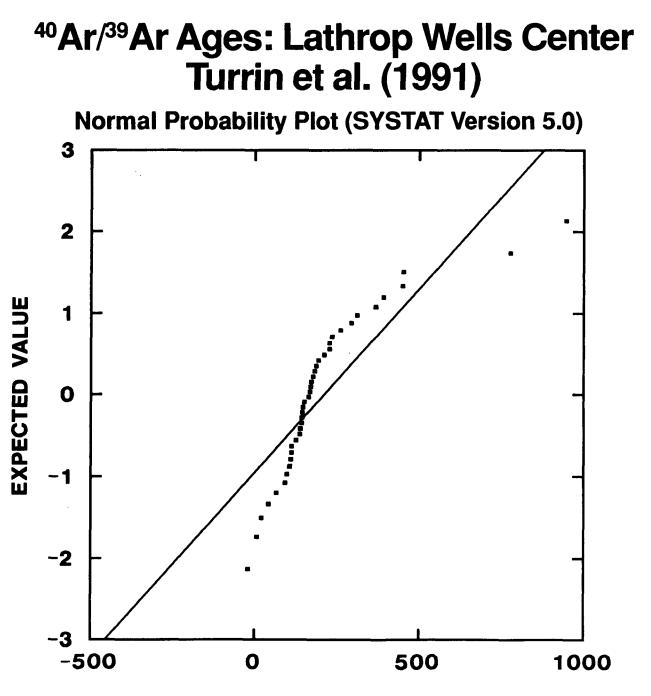

(Continued)

Continued difficulties with K-Ar and ⁴⁰Ar/³⁹Ar data

- Problem: data interpretations, not analyses or methods
 - Data range: too large for analytical error
 - Non-gaussian distribution
 - Positively skewed
 - Influential cases in regression calculations
 - Selective removal of samples
 - Improper use of weighted mean
 - Excess Ar
- Future directions:
 - Upper Bound age of center (>150 ka)
 - QA data set
 - ⁴⁰Ar/³⁹Ar ages of lithic fragments
 - More careful definition of assumptions, uncertainty data
 - Mineral separations


⁴⁰Ar/³⁹Ar Ages of the Bandelier Tuff Lower Member Spell et al. (1990)

Normal Probability Plot (SYSTAT Version 5.0)


VSLWBC5P.125.NWTRB/9-14/16-92

⁴⁰Ar/³⁹Ar Ages of the Bandelier Tuff Upper Member Spell et al. (1990)

VSLWBC5P.125.NWTRB/9-14/16-92

AGE

AGE

VSLWBC5P.125.NWTRB/9-14/16-92

Comparison of Variance Weighted Data Sets ⁴⁰Ar/³⁹Ar Method

	Turrin et al. (1991)	Turrin et al. (1991) Outliers Removed	Bandelier Tuff	Spell et al. (1990) Bandelier Tuff (Lower Member)
Number of Cases	40	36	26	26
Minimum	-20	-20	1.08	1.4
Maximum	947	392	1.18	1.6
Mean	211	162	1.13	1.49
Median	186	149	1.13	1.50
Variance	34647	8222	.001	.002
Standard Deviation	186	91	.028	.048
Skewness (G1)	2.3	0.5	-0.5	31
	ka	ka	Ма	Ма

U-Th disequilibrium

- Problems:
 - Analytical problems overcome
 - Mineral separations
 - Expensive, time-consuming measurements
- Future directions:
 - Decision on utility of method - next few months

Cosmogenic He age determinations

- Problems:
 - Minimum ages
 - Calibration of production rate
 - Age of main cone
- Future directions:
 - Technique looks promising
 - QA hurdles overcome
 - 65 ka convergence? He, ³⁶Cl, K-Ar mineral separations

Resolution =

Calibration Sites

(Continued)

Thermoluminescence

- Experiment Snake River Plains: good results < 30 ka
- Reproducible numbers
- Problems:
 - Calibration > 30 ka
 - Inconsistent with ³He (Forman not satisfied with sample)
 - Coarse sand
- Future directions:
 - Experiments to test applications of method
 - Understand mechanisms of young ages
 - Calibration sites for comparison

Significance of Lathrop Wells Studies Are the Different Interpretations Important?

Eruption models: monogenetic versus polycyclic

- Both models require multiple events
- Repository perspective:
 - Semantic versus substance
 - Multiple pulses

Key => Polycyclic model factored into E3

- Sufficient merit to polycyclic model to continue testing
 - Paleomagnetic data is inconclusive
 - Must examine all models, particularly conservative models
 - Timing of multiple events still unknown

Summary of Lathrop Wells Studies (We are Getting There)

- Encouraged by progress
 - Somewhat slow but steady
 - End is in sight; particularly with access to quarry property
 - Analogous features at other volcanic centers

Summary of Lathrop Wells Studies (We are Getting There)

(Continued)

- Investigators must be objective about results
 - Point out strengths and weaknesses of methods
 - Separate constraints, assumptions, speculations
 - Propose, test, revise...(repeat)
- Plea for professional objectivity
 - Maintain perspective of risk impact
 - Obtain fully qualified data
 - Be prepared to accept bounds versus resolution
 - Differences of opinion are healthy
 - * Alternative models important for the YMP
 - Differences can be established without *polarization*

FY 93 Priorities

- Geochronology studies
 - Continue (possibly wrap-up) Lathrop Wells studies
 - Detailed studies
 - -- Sleeping Butte
 - -- Crater Flat
- Field studies
 - Crater Flat mapping
 - Volume calculations
 - Pliocene Centers
- Probability studies
 - Issue resolution: major emphasis
 - E1-E2 tables
- Effects
 - Field analogues
 - E3 constraints
- Review of Geophysical data