U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT				
NUCLEAR W	ASTE TECHNICAL REVIEW BOARD			
PANEL ON STRUC	CTURAL GEOLOGY & GEOENGINEERING			
SUBJECT:	SOILS AND GEOMORPHIC STUDIES - PART I			
PRESENTER:	DR. LESLIE D. McFADDEN			
PRESENTER'S TITLE AND ORGANIZATION:	ASSOCIATE PROFESSOR UNIVERSITY OF NEW MEXICO			
PRESENTER'S TELEPHONE NUMBER:	(505) 277-6528			
	ALEXIS PARK HOTEL SEPTEMBER 14 - 16, 1992			

Photograph of Lathrop Wells Cone, Nevada

Photograph of quarry and exposures of volcanic deposits, Lathrop Wells cinder cone

Measured Stratigraphic Sections

A: Lathrop Wells cone, Crater Flat volcanic field, Nevada B: Black Tank cone, Cima volcanic field, California. Diagonal lines = deposits distributed by human activity; vertical wavy lines = soil development; symbols in parentheses = soil-horizon nomenclature.

Soil and Geomorphic Evidence for Late Quaternary Polycyclic Volcanism at Lathrop Wells Cone: Principle Areas of Concern

- Heterolithic lapilli-rich, quartzo-feldspathic deposits exposed in the Lathrop Wells Quarry: pedogenically modified primary fall-out deposits, or sediments emplaced via mass movement processes
- Age estimates for soils and geomorphic features at Lathrop Wells: Evidence for age estimate and basis for calibration, correlation

Soil development on Volcanic Flows in Arid Regions: Overview of Soil-Geomorphic Studies in the Cima Volcanic Field, California

- Soil development on scoria deposits: Ongoing studies at Lathrop Wells and Cima
 - Characteristic field properties, horizons
 - Textural, chemical, and mineralogical properties
 - Complex pedogenic and nonpedogenic features
- Lathrop Wells soils and particle-size characteristics: A critical analysis based on examination of pedologic and sedimentologic data
- Age estimates from soil data
- Future studies

Aerial photograph of the Cima volcanic field, Mojave Desert, California

Photograph of weakly developed Phase 1 soil, Cima volcanic field

Photograph of well developed Phase 2 soil on volcanic flow, Cima volcanic field

Photograph of vesicular A (Av) horizon, Cima volcanic field

DEPTH (cm)

PAVEMENT; A A↓ ABv &

Btk

Coxk

RUBBLE ZONE

Photograph of soil developed in tephra of Black Tank cone (A cone), Cima volcanic field

Lathrop Wells Volcanic Center S Qps₁ QI4 Q15? Ņ QI4 Q54 Qs. ,QI3 Quarry Site QI₆ Qs₃ Os₅ Qal $Q|_{\tilde{5}}$ QI3 0 km

Photograph of soil formed in pyroclastic surge deposit, Lathrop Wells cone

Profile Sequence Depth (cm)

Scoria Pavement

Avk	0 - 5
ABvk or Bwk	5 - 20
Bkys1	20 - 40
Bkys2	40 - > 10

Typical Field Properties

	Very pale brown sandy clay loam; strongly effervescent; many fine & strong angular blocky structure; medium vesicular pores; low gravel %
	Gravelly very pale brown sandy loam; effervescent; few to no vesicular pores; medium subangular blocky; moderate gravel content
	Very gravelly very pale brown sandy loam; effervescent, carbonate coatings on bases of scoria particles & loamy coatings on tops & sides; interstitial pores
)0	Scoria; carbonate and salt coatings on bases & oxidized on tops of scoria clasts single grain, loose loamy sand in voids

Qs4 Soil Profile: Silt + Clay (%)

Qs4 Soil Profile: Gravel (%) (>2 mm)

Qs4 Soil Profile: CaCO3 (%)

Qs4 Soil Profile: Electroconductivity (mmho/cm2)

Qs4 Soil Profile: Gypsum (%)

Primary Processes Influencing Soil Development in Scoria

- Entrapment of calcareous, salt-bearing eolian dust
- Infiltrating soil water redistributes eolian materials by entrainment of solid particles, colloidal and solution transport to form the vesicular A and subjacent B horizon matrix.
- Soil development directly associated with scoria framework grains includes (1) limited chemical alteration and formation of secondary Fe oxides and silica and (2) preferential accumulation of pedogenic calcium carbonate, salts, silt and clay coatings on the grain surface
- Increasing clay content favors dilatant, cumulic soil development above the framework-supported scoria parent material

Photograph showing krotovina feature caused by bioturbation in pyroclastic deposit, Lathrop Wells cone

Photograph of dissected scoria, Cima volcanic field

Photograph of non-pedogenic silty loam accumulation in scoria deposit, Cima volcanic field

Photograph of non-pedogenic silty loam accumulation (close-up) in scoria deposit, Cima volcanic field

Turrin and Champion (1992)

à

SOILGEOM. 125.NWTRB/9-14/16-92

Comparison of Lathrop Wells Quarry Deposits and Soil Development in Qs₄ Scoria: Conclusions

- (1) Similarity of particle size data indicates that such data do not (a) eliminate a pedogenic origin for the basal parts of units exposed in Lathrop Wells Quarry and (b) certainly do not uniquely identify a "cone apron" depositional environment.
- (2) Pedogenic origin of the Lathrop Wells Quarry units is shown by:
 - Presence of systematically spatially oriented, pedogenically accumulated coatings on scoria framework grains
 - Depth functions of <2 mm materials
 - Presence of "vesicular A" horizons above Bwk or Bk horizons

Comparison of Lathrop Wells Quarry Deposits and Soil Development in Qs₄ Scoria: Conclusions

(CONTINUED)

- (3) Pedogenic origin and the observed large "QF" component
 - Cumulic, dilatant soil development enables continued accumulation of fine-grain matrix that can ultimately greatly exceed depositional primary porosity
 - Stratigraphic character of deposits (decimeters thick, bounded by buried Av horizons) precludes accumulation of translocated fines over large depth (ie > 2 meters) but instead favors accumulation of matrix in "basal parts" of units
 - Appropriate consideration of volume-weight %-bulk density relations and particle size data ?

Classification of Quaternary Dating Methods: Soil and Weathering Data

(After Coleman, Pierce, and Birkeland, 1987)

Method	Result		
	Most Common	Least Common	
Soil-profile Development	Relative Age	Calibrated Age	
Rock and Mineral Weathering	Relative Age	Calibrated Age	
Soil Chemistry	Relative Age Calibrated Age	Numerical Age	

Stratigraphic Cross Section El Capitan Beach Ridge Complex

Photograph of soil in sand, beach ridge gravels of latest Pleistocene and Holocene age, Silver Lake Playa, California

Photograph of soil in Holocene fan deposit of the Soda Mountains, Silver Lake Playa area, California

Photograph of a well developed Pleistocene soil in fan deposits, Cima volcanic field, California

Future Studies of Soils in Scoria

- Bulk chemistry
- Soil mineralogy
- Soil micromorphology
- Isotopic analyses
- Radiocarbon dating of carbonate
- Evaluation of larger data set (ie, more soils)