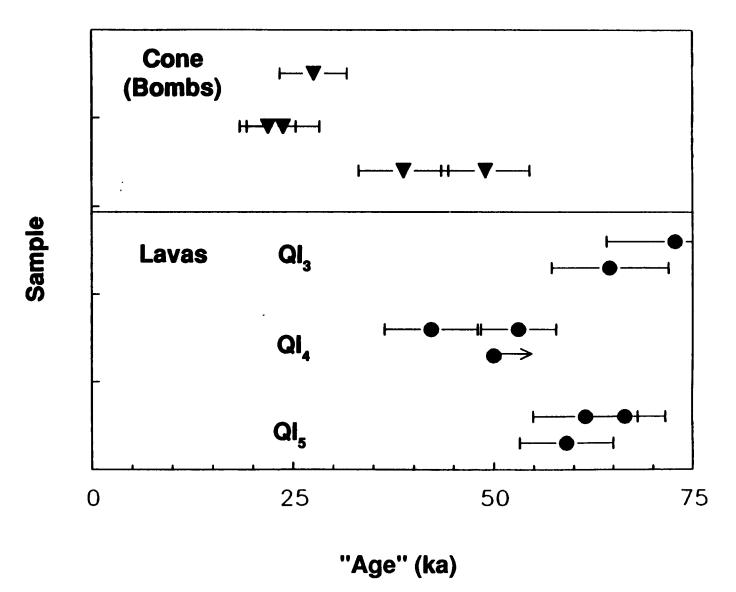
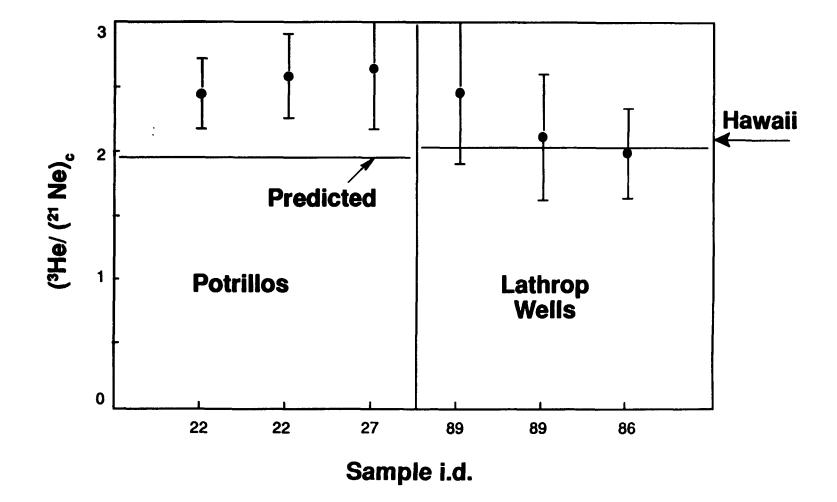


- Conclusions from helium dates
- Background for cosmogenic ³He dating
- Work in progress
- Observation, interpretation, and implication

Conclusions from Helium Dates


- Ql_3 , Ql_4 , and Ql_5 lavas all erupted about 65 ka ago
- Within the current resolution of this technique (+/- 10ka) Ql₃ and Ql₅ are the same age
- Numerical age ranges for these lavas are 42 to 98 ka
- Most recent volcanism (cone) was >18 ka ago, but we cannot rule out that it is the same age as the lavas

- Conclusions from helium dates
- Background for cosmogenic ³He dating
- Work in progress
- Observation, interpretation, and implication


Background for Cosmogenic ³He Dating

- Ideally, the buildup of cosmogenic ³He in a surface sample provides an estimate for the age of eruption
- Due to effects such as erosion, in practice a surface exposure age is always less than or equal to the eruption age
- Due to uncertainty in the production rate for cosmogenic ³He, uncertainty in the ³He ages of +/-30% must be assumed when comparing to ages from other techniques
- Olivine retains cosmogenic ³He quantitatively

³He Surface Exposure Ages for Lathrop Wells

Retention of Cosmogenic ³He in Olivine

- Conclusions from helium dates
- Background for cosmogenic ³He dating
- Work in progress
- Observation, interpretation, and implication

Work in Progress

At Lathrop Wells

- Multiple surfaces of Ql₃, Ql₄, Ql₅ have been collected to look at reproducibility/reliability of He ages
- In-place bombs from the side of the cone, unlikely
 to have had significant cover over their lifetime
- Will collect and analyze Ql₆ and spatter mound

Cross calibration to other chronometers

• We are searching for well-dated lavas in the Western U.S.

Zuni-Bandera flow near Grants, NM

¹⁴C ages on charcoal: 9.1 ± .08ka and 9.8 ± .06ka.
 Cosmogenic He: 13.0 ± 1.3ka (analytical precision)

Bluewater flow near Grants, NM

- Uranium series disequilibrium age of 80 (+20/-15)ka
- 2 Ma K-Ar age

- Conclusions from helium dates
- Background for cosmogenic ³He dating
- Work in progress
- Observation, interpretation, and implication

Observation:

Isotopic composition of Ar released by <u>crushing</u> olivine:

40 Ar/36 Ar

 $Ql_3: 328 \pm 7$ $Ql_5: 371 \pm 8$

Air Ar: 295.5

Interpretation:

 These lavas contain excess ⁴⁰Ar that is <u>not</u> due to in situ decay of ⁴⁰K

Concentrations released by crushing olivine:

QI₃: $5 \pm 1 \ge 10^9$ cm³STP/g of excess ⁴⁰Ar QI₅: 7.3 $\pm 0.6 \ge 10^9$ cm³STP/g of excess ⁴⁰Ar

Expect 10 x 10⁹ cm³STP/g of excess ⁴⁰Ar from decay of K in bulk rock (1.8% K) in 130ka. Note, however, that olivine makes up only 2% of the rock as microphenocrysts. May be more important in groundmass. Glass phase unknown

Implication:

 Need to know more about the distribution of this excess (mantle) Ar component between minerals before we can believe (or disbelieve) the K-Ar and ⁴⁰Ar/³⁹Ar ages