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Study Objectives 


Construct conceptual and numerical representations 
of the physical processes that govern fluid flow and 
nonreactive tracer transport through partially 
saturated fractured rock 

Evaluate these through comparison with the results 
of controlled experiments 
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These Models Will be Used to 


Identify processes important to the hydrologic 
behavior of the unsaturated zone 

Design and analyze experiments and interpret 
field data 

Integrate data collected from a variety of scales 


Assess the conceptual representation of the 
physical system in large-scale models of the site 
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Test and Modeling Scales 


Single 
Fracture [ ]  

TCw Tests 

PTn 
PercolationTests 

TSw 

Cross-Hole Tests 
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General Conceptual Model of 

Flow Regime at Yucca Mountain 


(from Montazer and Wilson, 1984) 
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Analyses of Percolation Flux will Consider 


° 	 Mult iphase processes 

• 	 Fracture-matr ix in teract ions 

• 	 Variable cl imate, and tempora l ly  and spatially, 
variable net inf i l t rat ion 

• 	 Strat igraphic d iscont inu i t ies  

• 	 The poss ib i l i ty  of focused percolat ion 
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Possible Methods for Estimating 

Percolation Flux 


Direct calculation from Darcy's law 

Direct observation; for example, measurement of 
inflow in ramps and drifts 

Environmental tracers; for example, 14C, tritium, 36CI 

Numerical modeling 
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Limitations.and Constraints 


• 	Flux estimates from each method subject to some 
uncertainty 

• 	Complementary methods must yield internally 
consistent picture of the liquid flux and its spatial, 
distribution 

• 	Degree of accuracy and certainty required in 
estimates of percolation flux depend, in part, on 
performance assessment analyses and characteristics 
of the engineered barriers 
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Examples of Modeling That Have Been 

Done to Understand Flow Behavior or to 


Estimate Liquid Flux 


• 	Numerical investigation of steady liquid water f low in 
a variably saturated fracture network 

• 	Estimation of unsaturated zone liquid water f lux at 
boreholes UZ #4, UZ #5, UZ #7, and UZ #13 
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Numerical Investigation of Steady Liquid 

Water Flow in a Variably Saturated 


Fracture Network 

(Kwicklis and Healy, 1993) 

Objectives: 

• To gain insight into the formation of preferential 
pathways within variably saturated fracture networks 

• To assess the limitations and potential implications of 
point measurements of water potential in the field 

• To evaluate the equivalent porous media representation 
of variably saturated fracture systems 
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Fracture Network Assumed for Simulation 
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Simulation Assumptions 


° Numerical s imulat ion in vert ical 5m-by-5m f low region 

• Two  f r a c t u r e  se ts  
- Sub-ver t ica l  set w i th  f ive 125 mic ron  f rac tures 

- Sub-hor izonta l  set wi th four  25 mic ron  f rac tures  

• Impermeable matr ix 

• Steady-f low 

• Ignore hysteret ic effects 
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Permeability-Thickness Products as a 

unction of Water Potential 


1 0  - 1 3  ~ ' , , , , , , , ,  , , , , , , ,,__= 

10 -14 ~ 


- 1 5  -	 -~ 
1 0  -

1 0  - 1 6  	 " , , , , ,  

10-17-	 ~ "'"',,i 
-	 10 18 ,,,,~ 

10-19 ']1 

125 u m  f r o c t u r e  
\ 

10 - 2 ]  	 CROSS-OVER 
WATER POTENTIAL 	 \ 

I 
- 2 2  

1 0  	 . . . . . . . . ' - ' ' ' ' ' ' "  


--0.01 --0.1 	 -- 1 

WATER POTENTIAL, IN METERS 

4MFUZK5P 13 125.NWTRB/4-21/22-93 



Location of Principal Flow Paths for 

Boundary Water Potentials of 0.0 Meters 
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Location of Positive Water Potentials for 

Boundary Water Potentials of 0.0 Meters 
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Location of Principal Flow Paths for 

Boundary Water Potentials of-0.25 Meters 
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Location of Most Negative Water 

Potentials for Boundary Water Potentials 


of-0.25 Meters 
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Standard Deviation of Fractional Flux as a 

Function of Boundary Water Potential 
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Standard Deviation of Water Potential as a 

Function of Boundary Water Potential 
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- -  

Equivalent Continuum Permeability as a 

Function of Boundary Water Potential 


! 0  -13 
I I I I I I I ! I I I I I I 1 I 1 

10 
- 14 _ ~ ' ~ . . ~  O MIXED 

! A 125 um froctures _-C 

X + 25 um troctures _ 
15 


¢-v"' 
 10- ~--. . . . . . . . . . . . . . .  O .  

< z 

m - 16 
i i i  

I-. .- 'E). ~:I i i  

N 
Z 

- - - 1 7  

~ 10 
_ . 1  

r n  
< 
L L I  

N 18 o, 10-
13_ 

-19 
10 

10 -zu  [ J, J _ _ _ , L  I 1 t ~ L _ ~ L [  ~ - . _ I J. _ I I I I J . ~  

0.01 - - 0 .1  

BOUNDARY WATER POTENTIAL, IN METERS 

4MFUZK5P 19.125.NWT RB/4-21/22-93 



Conclusions from Fracture Network Modeling 


• 	Water potential and flux are spatial ly variably 

within a network containing fractures of different 

aperture, even for steady-state f low 


• 	The tendency for f low to become concentrated, as. 

well as the location of the dominant f low pathways, 

varies as a function of the boundary water potential 


• 	Variability in water potential within the f low domain 

is a function of the boundary water potential 
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Implications 


° 	Measurements of water potential may reflect 
only the local environment for certain experimental 
conditions 

• 	Some poorly connected fractures may be saturated 
and drain when intersected by boreholes or drifts 

° Dominant flow pathways through fracture networks, 
if they occur, may change in response to changing 
climatic conditions 
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Estimation of Unsaturated Zone Liquid Water Flux 

at Boreholes UZ #4, UZ #5, UZ #7, and UZ #13 from 


Saturation and Water Potential Profiles 

(Kwicklis, Flint, and Healy, 1993) 

Objectives: 
• To estimate liquid water fluxes through the nonwelded 

and bedded units 

• 	To better understand recharge mechanisms and the 
role of the nonwelded units in redistr ibuting infi l tration 

• To examine the internal consistency of hydrologic data 
collected to date 

• 	To develop numerical models consistent with available 
data 
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Methods 


Regression analyses using porosity (~) as a predictor 
variable for K and van Genuchten parameters cx and 13 

Calculate saturation profiles for unsaturated zone boreholes 
from porosity, bulk-density, and gravimetric water- 
content information 

Estimate more or less continuous profiles of unsaturated K 
versus depth at unsaturated zone boreholes using 
regression relations between K, ~, 13 and ~, and measured S~ 

Use measured and predicted water potentials, along with 
estimates of unsaturated K, to estimate liquid flux versus 
depth from Darcy's law 
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Porosity versus Depth, UZ #5 
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Saturation versus Depth, UZ #5 
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Measured Water Potentials versus Depth, UZ #5 

(with 5th Order Polynomial Fit to Data 


From Nonwelded Horizons) 
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Predicted Water Potentials, UZ #5 
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Predicted Water Potentials, UZ #5 
(Calibrated) 
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Estimated Effective Hydraulic 

Conductivity, UZ #5 
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Estimated Liquid Flux, UZ #5 
Calculated Using Predicted Water Potentials 
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Estimated Liquid Flux, UZ #5 

Calculated Using Polynomial Fit to Measured Water 
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Tritium Distribution, UZ #5 
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Schematic Cross-Section Through Pagany Wash 
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Conclusions 


• 	Important statistical correlations were established 
that allow augmentation of existing hydrologic data 
and constrain parameter space in numerical models 

• 	At present, flux estimates are imprecise because K 
versus S~ relations have been measured for only a few 
stratigraphic horizons, and unsaturated K estimates 
are subject to large uncertainty and potential error 
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Conclusions 

(continued) 

° The calculated flux profiles for boreholes located 
within and adjacent to the alluvial channels indicate 
that past recharge has been high relative to previous 
estimates made for the average flux over the site 
(generally less than 1 mm/yr) 

• The calculated flux profiles display systemmatic 
trends, including large-scale reversals in flow 
direction within and near the bedded air-fall units, 
that suggest the occurrence of lateral flow 
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Implications 


• 	An understanding of the microstratigraphy is 
essential to understanding the observed 
saturation profiles 

• 	Flow within the upper part of the unsaturated zone 
is neither one-dimensional nor steady state, 
Numerical models that do not allow for transient 
behavior and multi-dimensional f low will not be able 
to reproduce the observed water potential or 
saturation data in the upper part of unsaturated zone 
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Conclusions of Study 


• 	Process-oriented models, particularly fracture 
network models, can play an important role in 
developing conceptual models of percolation 
through variably saturated fractured rock, and 
reveal potential limitations of both porous media 
equivalent models and field data 

• 	Uncertainty exists in all approaches to characterizing 

percolation. Multiple approaches involving numerical 
modeling at different scales, hydrologic testing, 
geologic characterization, geochemistry, and in situ 
monitoring are necessary to provide constraints on 
possible percolation fluxes 
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