
| OFFICE OF                              | U.S. DEPARTMENT OF ENERGY<br>CIVILIAN RADIOACTIVE WASTE MANAGEMENT                                       |
|----------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                        | VASTE TECHNICAL REVIEW BOARD<br>FULL BOARD MEETING                                                       |
| SUBJECT:                               | LONG-TERM CLIMATE MODELING                                                                               |
| PRESENTER:                             | DR. STARLEY L. THOMPSON                                                                                  |
| PRESENTER'S TITLE<br>AND ORGANIZATION: | HEAD, INTERDISCIPLINARY CLIMATE SYSTEMS<br>NATIONAL CENTER FOR ATMOSPHERIC RESEARCH<br>BOULDER, COLORADO |
| PRESENTER'S<br>TELEPHONE NUMBER:       | (303) 497-1628                                                                                           |
|                                        | RENO, NEVADA<br>APRIL 21-22, 1993                                                                        |

### **Example Model Hierarchy**



**Study Purpose and Objectives** 

**Value and Limitations of Predictive Models** 

**Current Model Basis** 

**Study Approach** 

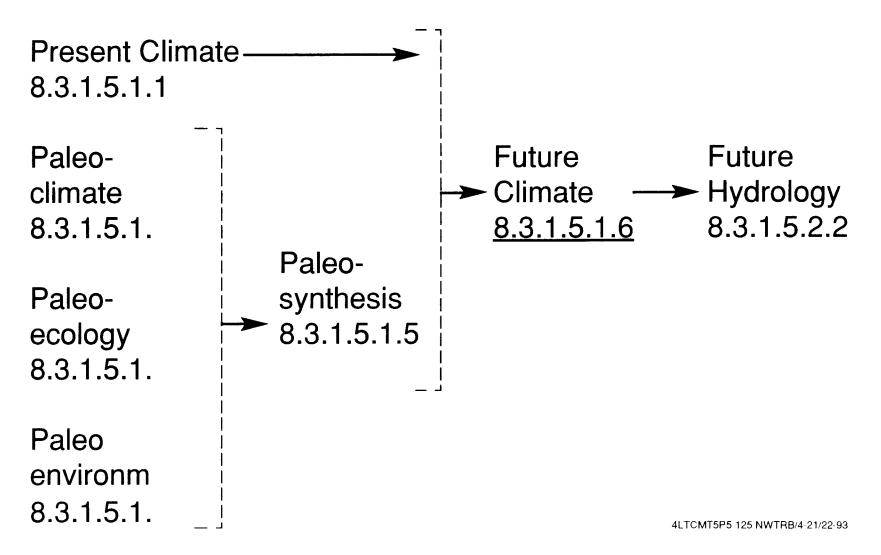
### **Study Purpose and Objectives**

#### Purpose:

 To provide estimates of future climate conditions in the Yucca Mountain region for use in estimating the effects of future climate on hydrologic conditions

## **Study Purpose and Objectives**

(Continued)


### **Objectives:**

- To establish the validity of numerical climate models on both global and regional scales;
- To identify future climate scenarios that may impact post-closure repository performance through their effect on future hydrologic conditions; and
- To use these models to provide estimates of climate conditions for the next 100,000 years, with an emphasis on the next 10,000 years.

### **Study Purpose and Objectives**

(Continued)

### **SCP Interfaces**



**Study Purpose and Objectives** 

Value and Limitations of Predictive Models

**Current Model Basis** 

**Study Approach** 

### Value and Limitations of Predictive Models

Value of Predictive Modeling:

- Modeling used to build confidence in anticipated performance
- Scientific method used for validating hypotheses and for reaching consensus on natural-system driving forces
- Identifies unanticipated phenomenological behavior

### Value and Limitations of Predictive Models

(Continued)

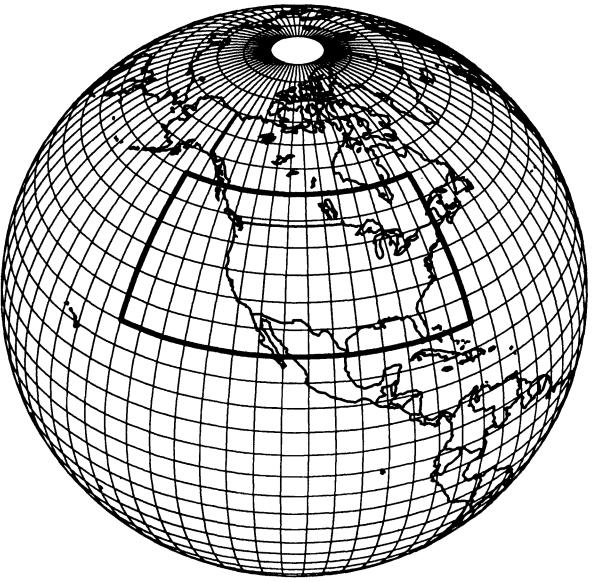
### **Limitations of Predictive Modeling**

- · Will not yield "guaranteed answers"
- Limited simulation period because of intense computational demands
- Model uncertainty; i.e., spatial resolution, precipitation simulation

### **Study Purpose and Objectives**

#### Value and Limitations of Predictive Models

**Current Model Basis** 


**Study Approach** 

## **Current Model Basis**

**Global Climate Model (GCM: GENESIS):** 

- <u>Global ENvironmental and Ecological Simulation</u> of Interactive Systems
- ~ 500 km grid spacing
- Provides boundary conditions to regional model via one-way link

### Global Climate Model (GCM) Grid Mesh and Regional Domain



## **Current Model Basis**

(Continued)

#### **Regional Climate Model (RCM: MM4-BATS):**

- <u>Mesoscale Model 4</u> <u>Biosphere Atmosphere</u> <u>Transfer Scheme</u>
- 60 km grid spacing
- Resolves important topographic features better than global model
- Includes vegetation and subsurface water transport effects

### Regional Climate Model (RCM) Grid Mesh



## **Current Model Basis**

(Continued)

### Model Output:

- Model Variables:
  - Temperature, precipitation, wind, solar and infrared radiation, soil moisture, runoff

#### • Output format:

- Time series of gridded data covering a few years with hourly resolution

### **Study Purpose and Objectives**

### Value and Limitations of Predictive Models

#### **Current Model Basis**

**Study Approach** 

## **Study Approach**

Phased Approach with iterative evaluation of results and incorporation of developments in climate modeling

### Planning and Controls

- Issue Study Plan
- Implement Quality Assurance Controls
- Initiate Advisory Board
- Testing of one-way GCM --> RCM Interface
- Current/Paleo Climate Model Validation Analysis
- Future Climate Analysis

# **Study Approach**

(Continued)

### Scenario selection

- Assume future climate can be represented as a finite set of states; selections from this set are called "future climate scenarios"
- Selections are based on paleoclimate, current climate, and modeling and theoretical information
- Selection biased towards those anticipated to yield higher precipitation (examples: Ice age, global warming, super El-Niño)
- Reasonable range of scenarios, subject to limitations of available computer resources

#### **Study Purpose and Objectives**

### **Value and Limitations of Predictive Models**

### **Current Model Basis**

**Study Approach** 

- Transitioning Pacific Northwest Laboratory (PNL) global climate work into consolidated future-climate work at Sandia National Laboratories (SNL)
- Completing SCP 8.3.1.5.1.6 Study Plan
- Implementing improved contract and quality controls
- Completed preliminary validation of RCM with current regional observations