U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT				
NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING				
SUBJECT:	ALTERATION HISTORY OF YUCCA MOUNTAIN DUE TO THERMAL EFFECTS ANALOGUE FOR A HOT REPOSITORY?			
PRESENTER:	DR. DAVID L. BISH			
PRESENTER'S TITLE AND ORGANIZATION:	TECHNICAL STAFF MEMBER EARTH AND ENVIRONMENTAL SCIENCES DIVISION LOS ALAMOS NATIONAL LABORATORY LOS ALAMOS, NEW MEXICO			
PRESENTER'S TELEPHONE NUMBER:	(505) 667-1165			
· .	DENVER, COLORADO JULY 13-14, 1993			

Cross-Section A-A' along Antler Ridge at Yucca Mountain, Nevada

Mineralogical Alteration

- Goal is to predict the effects of repository-induced temperature and P(H₂O) changes on the current mineral assemblages
 - Potential alteration, dissolution-precipitation reactions:
 - -- Glass -> zeolite/smectite/silica assemblage
 - -- Clinoptilolite 🔶 analcime, alkali feldspar
 - -- Mordenite -> analcime
 - -- Silica dissolution/precipitation
 - Potential hydrologic effects:
 - -- Decrease in permeability in vitric, vitrophyre horizons
 - -- Increase in permeability in zeolitic horizons
 - -- Change in nature of water storage capacity

Information Desired from a Natural Analogue

- Long-term behavior of rocks and minerals in a repository environment
 - Difficult to obtain in lab (low temperatures and long reaction times)

Difficulties with Natural Analogues

- Defining past conditions
- Locating representative conditions
- Identifying representative mineral assemblages
- Yucca Mountain not presently an active system; water amounts and concentrations during alteration unknown

Yucca Mountain as a Natural Analogue to Repository-Induced Alteration

- 1. Hydrothermal system in northern Yucca Mountain
 - Illite/smectite, fluid-inclusion geothermometers
 - Determine apparent long-term mineral stabilities
- 2. Topopah Spring vitrophyre alteration
 - Dynamic alteration, concentrated around fractures
 - State of saturation uncertain, spatially variable
- 3. Vitric-zeolitic transition in the Calico Hills Formation

Southwestern Nevada Volcanic Field, Nye County, Nevada

Note:

Heavy lines with hatchure marks to the inside represent the approximate outer limit of the Timber Mountain-Oasis Valley Caldera complex, including the Sleeping Butte and Claim Canyon segments (dashed where indefinite). Heavy lines with hatchure marks to the outside represent the periphery of the Timber Mountain resurgent dome. Drill cores USW G-1, G-2, G-3 are shown.

Mineral Distribution in Drill Hole USW G-2 from X-Ray Powder Diffraction Data

(BEST AVAILABLE COPY)

DCDBSHTB9.125.NWTRB.7/13-14/93

Geothermal Gradients in USW G-1, G-2, and G-3

Northern Yucca Mountain Hydrothermal System

- A hydrothermal system existed beneath the north end of Yucca Mountain⁴ ~10.7 Ma, £1Myr duration
- Paleogeothermal profiles are consistent with a change from a meteorically cooled zone to a convective zone, with depth
- Apparent long-term (saturated) thermal stabilities of minerals in Yucca Mountain tuffs:
 - Clinoptilolite ~100°C
 - Mordenite ~130°C
 - Analcime 175-200°C
 - Cristobalite 90-100°C in G-2, lower in G-3
 - Reactions in G-3 appear to be water-chemistry dominated

Importance of Mineralogical Alteration

- Transformation of clinoptilolite to analcime
 - reaction times and temperatures?

2.67 clinoptilolite → 1 analcime + 1 quartz + 48H₂O

Clinoptilolite: $Na_6Al_6Si_{30}O_{72} \bullet 24H_2O (V = 2100.0Å^3)$ Analcime: $Na_{16}Al_{16}Si_{32}O_{96} \bullet 16H_2O (V = 2585.8Å^3)$ Quartz: $Si_3O_6 (V = 113.01Å^3)$ Cristobalite: $Si_4O_8 (V = 172.17Å^3)$

Volume of reactants = 2.67(2100.0) = 5607.0Å³ Volume of products = 2585.8 + 16(113.01) = 4393.96Å³ Volume of products = 4651.8Å³ w/cristobalite

 $\Delta V = -21.5\%$ (-16.9% w/cristobalite)

- Possible silica mobilization in the reflux zone
- Volume decrease
- H₂O generation
- Loss of sorptive phase

Topopah Spring Vitrophyre

- Transition zone between Topopah Spring devitrified tuff and vitrophyre a potential natural analogue to repository-induced alteration
 - Uncertain saturation; spatially variable
- Alteration dynamic; concentrated around fractures
- Natural alteration assemblage suggests vitrophyre alteration to clinoptilolite, smectite, and silica phases (40-100°C, oxygen isotope geothermometry)
- Suggests that mineral sealing of fractures in vitrophyre may occur

Devitrified Fracture Detail from GU-3, 1195-Ft. (364.2m) Depth

Isotopic Compositions and Temperatures of Secondary Quartz Formation

Sample	δ ¹⁸ O (‰, SMOW)	Τ_Α (°C)	Т _в (°С)	
VH2-3545-q	13.0	65	95	
VH2-3565a	11.9	70	100	
YF-4-q	17.8	40	70	

T_A Calculated from Clayton & others (1972) T_B Calculated from Bottinga & Javoy(1973) δ^{18} O of -13.5% assumed for the water Analyses reproducible to <u>+</u>0.1% SMOW = standard mean ocean water

Alteration of Vitrophyre Glass

Vitric-Zeolitic Transition

- Saturated hydraulic conductivity decreases by 10²-10⁴ going from vitric to zeolitic
- Porosity decreases from ~37% to ~29%
- Water reservoirs:
 - Clinoptilolite tuff
 - -- 0.29 g/cm³ in pores
 - -- 0.26 g/cm³ in clinoptilolite (strongly held)
 - Vitric, nonwelded tuff
 -- 0.37 g/cm³ in pores
- Vitric tuff in contact with warm condensate may react quickly, depending on degree of saturation

Conclusions

- Deep alteration system represents a saturated end member
 - Information on stability of zeolites and silica phases
- Vitric to zeolitic transition in nonwelded tuffs
 - Porosity decreases little; storage significantly different
 - Saturated hydraulic conductivity decreased by 10²-10⁴
- Topopah Spring alteration may be appropriate analogue
 - Unsaturated zone (?)
 - Geologically short duration
 - Fracture dominated and spatially variable
 - Evidence of glass dissolution and mineral sealing
 - Channeling and concentration of fluids
- Alteration of fractured, welded rock
 - Little alteration, but potential silica redistribution in reflux zone
 - Potential changes in permeability and porosity

Future Work

- Kinetics of dissolution/precipitation of silica polymorphs, including opal-CT
- Kinetics of dissolution/precipitation of clinoptilolite, mordenite, and analcime
- Performing coupled transport/chemical reaction modeling
- Reaction of existing phases under partially saturated or steam conditions