U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING

SUBJECT:

PERFORMANCE ASSESSMENT

EFFORTS IN SUPPORT OF NATIONAL

ACADEMY OF SCIENCES STUDY

PRESENTER:

DR. JAMES O. DUGUID

PRESENTER'S TITLE

AND ORGANIZATION:

SENIOR SCIENTIST, CRWMS M&O/INTERA VIENNA, VIRGINIA

PRESENTER'S

TELEPHONE NUMBER:

(703) 204-8851

DENVER, COLORADO JULY 13-14, 1993

Background

The National Academy of Sciences (NAS) Committee on Technical Bases for Yucca Mountain Standards will examine

- Whether a standard based on dose to an individual is reasonable
- Whether a system of post-closure oversight will prevent intrusion
- Whether it is possible to predict human intrusion over 10,000 years

Objectives of Performance Assessment Analyses

- To provide sensitivity analyses of alternative performance measures for use as background information to the NAS committee on Yucca Mountain standards
- To compare alternative approaches to developing environmental standards

Approach

- Use NAS Waste Isolation Systems Panel (WISP)
 results as a starting point (Study of the Isolation
 System for Disposal of Radioactive Wastes, 1983)
- Update calculations to current understanding of Yucca Mountain
- Conduct sensitivity/uncertainty analyses to define potential dose limits and time periods

Approach

(Continued)

- Compare results using different models
 - RIP, basis for TSPA II
 - NEFTRAN-S, basis for 40 CFR 191
 - UCBNE-41, basis for WISP
- Briefly examine alternative approaches and population constraints

Possible Performance Measures

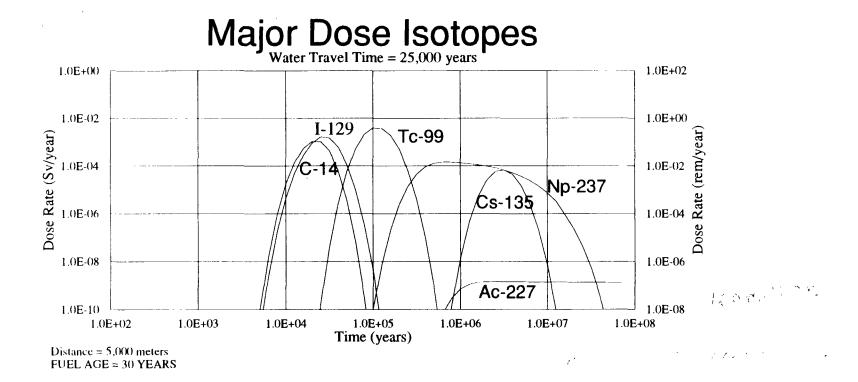
- Release
- Concentration (peak)
- Individual dose
- Dose to critical population
- Average dose to population
- Health effects
- Risk

Alternative Approaches

- Uranium ore body
 - Individual dose
 - Health effects
- Comparison of standards for other radioactive materials

Critical Group Size Based on Available Water

- Use water budget for Buckboard Mesa, Jackass Flats, and Crater Flat subbasins
- Available ground water is between the annual safe yield (300 acre-feet) and the annual recharge (2300 acre-feet), which is 3.7 x 10⁸ to 2.8 x 10⁹ liter/year
- Household use is 150 gal/day/capita (2.1 x 10⁵ liter/year/capita)
- Farming requires 20,000 square meters/capita/year; 150 liters/square meter/month; and, the growing season is 6 months (1.8 x 10⁷ liter/capita/year)


Critical Group Size

- Household Use = 1,800 to 13,000 persons
- Farming = 21 to 160 persons

Individual Dose Assumptions

- Ground-water travel time = 25,000 years
- Infiltration = 1.0 mm/year
- Porosity = 0.1
- Aquifer thickness = 2400 m
- Dilution factor = 1.15 x 10⁻⁴
- Dispersion coefficient = 50 m²/year
- 129I, 14C, 99Tc, 79Se, 135Cs are alteration-controlled
- Other radionuclides are solubility-limited

Individual Dose Rate (UCBNE-41)

Status

- Sensitivity analyses using UCBNE-41 are complete
- Sensitivity analyses using RIP and NEFTRAN-S are well underway
- Work on uranium ore bodies is underway