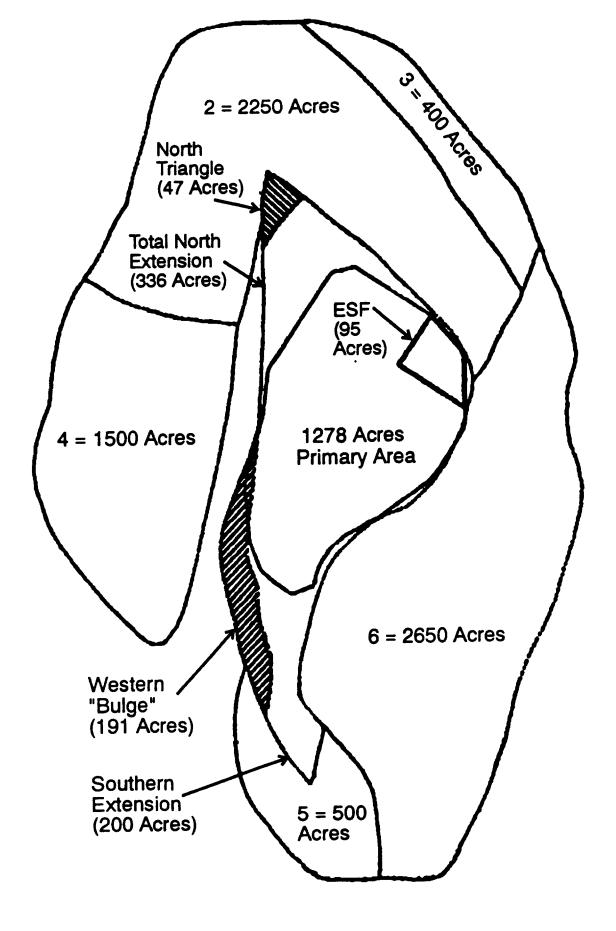
Introduction to Thermal-Loading Issues

US Nuclear Waste Technical Review Board Meeting Denver, Colorado July 13, 1993


Don Langmuir

Quotes about Thermal Loading From the Board's Fifth (June 1992) Report

- "Because an adequate evaluation of the technical merits and uncertainties of various thermal-loading strategies has not yet been performed, the Board believes that making a commitment to a specific strategy and corresponding waste management system design is premature."
- "The primary goal... should be to ensure system safety throughout the life of the repository with a minimum of uncertainty. Sound technical analysis should not be sacrificed to meet what may be unrealistic and unnecessary program schedules."
- "It is wise to keep options open until competing strategies are thoroughly evaluated...."

CONTROLS ON THERMAL LOADING

- BURNUP HISTORY OF SPENT FUEL
- AGE OF FUEL SINCE REMOVAL FROM REACTOR
- WASTE COMPOSITION INCLUDING RELATIVE AMOUNTS OF SPENT FUEL AND DEFENSE WASTE
- AMOUNT OF SPENT FUEL PER WASTE PACKAGE
- NUMBER OF PACKAGES PER ACRE
- SPATIAL ARRANGEMENT OF FUEL AGES IN REPOSITORY

ASPECTS OF THE WASTE MANAGEMENT SYSTEM AFFECTED BY THE SELECTION OF A SPECIFIC THERMAL LOADING STRATEGY (contd.)

- USE AND DESIGN OF AN ENGINEERED BARRIER SYSTEM AND BACKFILL
- FUEL AND CLADDING PERFORMANCE, CANISTER CORROSION
- RELEASE AND TRANSPORT OF RADIONUCLIDES TO THE ASSESSIBLE ENVIRONMENT
- WASTE MONITORING AND RETRIEVABILITY IN REPOSITORY
- COST OF WASTE MANAGEMENT SYSTEM
- LICENSABILITY OF REPOSITORY (PREDICTABILITY OF ITS LONG-TERM PERFORMANCE)

ASPECTS OF THE WASTE MANAGEMENT SYSTEM AFFECTED BY THE SELECTION OF A SPECIFIC THERMAL LOADING STRATEGY

- WASTE HANDLING, TRANSPORTATION AND STORAGE
- WASTE PACKAGE DESIGN INCLUDING CAPACITY
- **REPOSITORY SIZE AND DESIGN**
 - A. BOREHOLE VS. DRIFT EMPLACEMENT
 - **B. DRIFT DIAMETER AND SEPARATION**
 - C. VENTILATION AND ENGINEERED HEAT CONTROLS AND EFFECTS (E.G. HEAT PIPES)

Some Possible Consequences of Different Thermal Loading Choices

	'Low' (sub-boiling i.e. wet)	'Medium' (dry-wet)	'High' (dry-wet)	'Higher' (extended-dry)
Areal Power Density (APD) (kw/Ac)	~15	~30	~60 (57 is DOE SCP base-line)	~120 (114 suggested by LLNL)
Expected boiling/below boiling conditions near waste package over time	esp.below boiling	early boiling → below boiling	boiling for ~300 to 1000 years → below boiling thereafter	above boiling for 1,000 to >10,000 years
Size of disturbed zone	small	large	large	largest
Risk of waste package (WP) failure (via corrosion) & aqueous & gaseous radionuclide (RN) releases	high at all times	high during below- boiling period	high after 300-1000 year (during below- boiling period	may be low, but unknown; high Ts may accelerate WP failure and RN releases.

Some Possible Consequences of Different Thermal Loading Choices (continued)

	'Low' (sub-boiling)	'Medium' (dry-wet)	'High' (dry-wet)	'Higher' (extended- dry)
Risk that refluxion could enhance RN releases to accessible environment	low	high during below- boiling period	high during below- boiling period	highest
Simplicity of concept (simple is better for licensing)	complex	more complex	more complex	may be simplest, but proof is needed
Time & cost to obtain scientific evidence needed for licensing	considerable	more	even more	perhaps less than 'low'

ISSUES AND CONCERNS RELATED TO THE EXTENDED-DRY CONCEPT

- (1) A LARGE HEAT LOAD DOES NOT GUARANTEE THAT COMPLETE FORMATION DRY-OUT WILL BE ACHIEVED.
- (2) EVEN AT TEMPERATURES WELL ABOVE BOILING, LIQUID WATER MAY BE RETAINED IN THE ROCK BY CAPILLARY AND ADSORPTIVE PROCESSES.
- (3) LIQUID CONDENSATE MAY FLOW IN FRACTURES EVEN IF MOST OF THE ROCK MASS NEAR THE REPOSITORY DRIES OUT.
- (4) INCREASED REPOSITORY HEAT LOAD WILL PROBABLY ENHANCE FRACTURE FLOW.
- (5) DIFFERENTIAL DRYING AND CONDENSATION MAY ENHANCE LIQUID FLOW NEAR SOME WASTE PACKAGES EVEN AS OTHERS ARE DRIED OUT.
- (6) INCREASED HEAT LOAD ENHANCES THE POTENTIAL MIGRATION AND ESCAPE OF GAS-BORNE RADIONUCLIDES.

ISSUES AND CONCERNS RELATED TO THE EXTENDED DRY CONCEPT (contd.)

- (7) INCREASED TEMPERATURES MAY REDUCE THE STABILITY OF MINED OPENINGS.
- (8) INCREASED TEMPERATURES MAY REDUCE THE SORPTIVE ABILITY OF MINERALS IN THE TUFF TOWARDS DISSOLVED RADIONUCLIDES.
- (9) HIGHER TEMPERATURES MAKE IT MORE DIFFICULT TO MAINTAIN OPERATIONAL SAFETY, AND TO ASSURE WASTE RETRIEVABILITY.
- (10) HIGHER TEMPERATURES MAY CAUSE DEGRADATION OF FUEL CLADDING AND HLW GLASS DEVITRIFICATION.
- (11) HIGHER TEMPERATURES MAY LEAD TO THE FORMATION OF A REPOSITORY-SIZED VAPOR-DOMINATED HYDROTHERMAL SYSTEM WITH FRACTURE SEALING BY PRECIPITATED SILICA (ETC). THE RESULTANT PRESSURE BUILDUP MAY LEAD TO EXPLOSIVE CONDITIONS.

SOME KEY DATA INPUTS NEEDED FOR THE MODELING AND PREDICTION OF REPOSITORY PERFORMANCE UNDER DIFFERENT THERMAL LOADS

- SITE CHARACTERIZATION DATA
- **RESULTS OF HEATER TESTS**
- INFORMATION ON COUPLED PROCESSES
- GEOTHERMAL ANALOGS