·····				
U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT				
NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING				
SUBJECT:	HEAT-DRIVEN FLOW PROCESSES AT A POTENTIAL YUCCA MOUNTAIN REPOSITORY			
PRESENTER:	DR. KARSTEN PRUESS			
PRESENTER'S TITLE AND ORGANIZATION:	SENIOR SCIENTIST, EARTH SCIENCES DIVISION LAWRENCE BERKELEY LABORATORY BERKELEY, CALIFORNIA			
PRESENTER'S TELEPHONE NUMBER:	(510) 486-6732			
	DENVER, COLORADO JULY 13-14, 1993			

U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT				
NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING				
SUBJECT:	HEAT-DRIVEN FLOW PROCESSES AT A POTENTIAL YUCCA MOUNTAIN REPOSITORY			
PRESENTER:	DR. KARSTEN PRUESS			
PRESENTER'S TITLE AND ORGANIZATION:	SENIOR SCIENTIST, EARTH SCIENCES DIVISION LAWRENCE BERKELEY LABORATORY BERKELEY, CALIFORNIA			
PRESENTER'S TELEPHONE NUMBER:	(510) 486-6732			
	DENVER, COLORADO JULY 13-14, 1993			

Repository Behavior at Yucca Mountain

Complex Processes

- Heat transfer: conduction, convection, vaporization, and condensation
- Flow of liquid water and gas under gravity, capillary, and pressure forces
- Vapor-air diffusion with pore-level phase change effects
- Strong coupling between fluid flow and heat transfer
- Highly nonlinear relative permeability and capillary pressure behavior
- TOUGH/TOUGH2 codes: borrow from geothermal and petroleum reservoir simulation methodology

Repository Behavior at Yucca Mountain

(Continued)

Complex Hydrogeologic Setting

- Heterogeneity on many different scales: layering, tilting, faults, fractures
- Initial and boundary conditions: surface topography, atmospheric forcings

DCTRBKC3.125.NWTRB/7-13/14-93

Schematic of Heat Transfer Regimes in Plane Perpendicular to the Axis of the Waste Packages

Comparison of TOUGH2 Results with Similarity Solution

Characteristic Times for Multiphase Processes (*)

Process	Hydrogeologic Unit		
	Topopah Spring	Calico Hills	
Heat conduction	29,900 yrs	51,100 yrs	
Liquid flow	234,700 yrs	176 yrs	
Gas flow	207 days	127 yrs	
Vapor diffusion	1,480 yrs	1,480 yrs	
Air diffusion	84,600 yrs	26,900 yrs	

* For a propagation distance of x = 1000 m, calculated from $t = x^2/D$, where D is the appropriate diffusivity

Conceptual Model of Flow at Yucca Mountain

(from Klavetter and Peter, SAND85-0855, March 1986)

(BEST AVAILABLE COPY)

•

DCTRBKC9.125.NWTRB/7-13/14-93

Simulated Water Saturation Profiles

RZ Liquid Saturation Profiles (R=705.16 m)

XZ Liquid Saturation Profiles (X = 1100 m column)

Temperature History, Drying and Rewetting Times at Node AC 2, 3 cm from Waste-Package Surface

Dry Repository Operation?

You can

- Keep some of the waste packages dry all of the time
- Keep all of the waste packages dry some of the time

but you cannot

• Keep all of the waste packages dry all of the time

Obstacles Against Dry Repository Operation

- Thermodynamics: vapor pressure lowering, salinity
- Infiltration
- Heterogeneity:
 channelized water flow, release of ponded water

.

Waste Heat ⇔ Infiltration

Heat Output and Vaporization (Single Waste Package)

DCTRBKC21.125.NWTRB/7-13/14-93

Water Flow in Unsaturated Fractured Media

- Heterogeneity
 - Layering
 - Fracture networks
 - Individual fractures
- Preferential Paths
- Stripa Experiment
 - Validation drift: 50 m long, 3 m diameter
 - 57 % of inflow occurred over 0.2 % of drift area
- Water at Yucca Mountain
 - Channelized flow, ponding
 - VS.
 - Thermal effects, imbibition

Vertical Water Channel: Temperature and Liquid Saturation at Repository Horizon

DCTRBKC24,125.NWTRB/7-13/14-93

Inundation of Waste Packages by Ponded Water?

Waste Form	Total Heat	Vaporization Capability	
	Capacity (MJ/°C)*	(kg)	(m3)
(1)	15.85	1754.5	1.83
(2)	5.85	646.9	0.68
(3)	3.27	362.2	0.38

- (1) Package for drift emplacement, with 21 PWR spent fuel assemblies
- (2) Package for vertical emplacement, with consolidated fuel from 3 PWR or 4 BWR assemblies
- (3) Package for vertical emplacement, with unconsolidated fuel (intact assemblies)
- * Data from Gary Johnson, LLNL, private communication

Generation of Heat and Condensate from 10-Year-Old Waste Packages

Time After Emplacement	Cumulative Heat Generation	Maximum Cumulative Condensate Generation [†]	
(years)	(10 ¹² Joules)	(10 ⁶ kg)	(10 ³ m ³) [‡]
10	.8658	.3303	.3447
10 ²	4.488	1.712	1.786
10 ³	12.39	4.726	4.932
10 ⁴	27.59	10.52	10.98
10 ⁵	51.05	19.47	20.32

- * Based on converting water at 13 °C to 100 °C vapor; h_{vi} = 2621.5 kJ/kg
- * Based on water density of 958.3 kg/m³ at 100 °C

Heat-Driven Flow Processes at a Potential Yucca Mountain Repository: Current Status of Modeling Activities

- Coupled multiphase fluid and heat flows
- Complex heterogeneous hydrogeological setting
- Large range of space and time scales
- Modeling capabilities adequate for the highly non-linear flow processes
- Obtained basic understanding of fluid and heat flow mechanisms
- Present models are schematic and approximate, can only provide a rough outlook on repository behavior
- Lack of quantitative information, especially on multiphase behavior of fractures
- Need more realistic representation of heterogeneity on a multitude of scales
- Interpret model predictions with caution!