

Mined Geologic Disposal System (MGDS) Multiple-Purpose Canister (MPC) Thermal-Loading Considerations

- MPC implications on thermal loading
- MPC design criteria related to thermal loading
- Thermal-loading decision strategy
 - Activities ongoing and planned
 - Schedule
- Decision risks

MPC Implications on Thermal Loading

Importance of Thermal Loading

Affects

- Magnitude and content of site characterization
- Material selection and design of waste package
- Repository design and operation
- All of which affects
 - Overall system performance and licensability

Factors Affecting Thermal Response Waste Package

- Repository thermal loading, area, mass loading (AML)/ area, power density (APD) (canister and drift spacing)
- Waste package size
 - Heat output per package
 - Waste package capacity
- Decay heat of spent nuclear fuel (SNF)
 - Time after discharge
 - Initial enrichment and burnup of SNF
- Materials of fabrication
- Design type
 - Flux trap
 - Burnup credit
- Drift size

Thermal Loadings

	Low T < boiling	Medium SCP - hot	High Extended hot
MPC with Disposal Canister	Small	Any	Any
Emplacement Mode	Any	Any	Drift or Large Horizontal Borehole
Emplaced Area	~2xSCP	SCP-1250 acres	~1/2xSCP

POTENTIAL REPOSITORY SIZE (EMPLACEMENT OF 70,000 MTU)

RPSZTD2.PM5.123/10-28-93

Implications of a Large MPC in a Below-Boiling Repository

Significant portions of the rock will be above boiling

- In the immediate vicinity of the large waste package because of its high heat-generation rate
- Reduces the overall effectiveness of the cold strategy

Significant potential for water reflux into the drift

- Large waste packages/MPC require large spacing to achieve low thermal loading
- Large spacing between packages means large temperature variations along the drift
- Large temperature variations can drive persistent
 convection cells

MPC Design Criteria Related to Thermal Loading

MPC Design Criteria Related to Thermal Loading

- Must meet the repository Title 10 CFR Part 60 performance requirements
 - 10 CFR 60.133 (i) performance under thermal loads
 - 10 CFR 60.113 (a) (ii) (A) substantially complete containment for 300-1,000 years
- Maximum temperature goals
 - 350°C fuel element cladding
 - 200°C one meter into rock
- Criticality
- Subsurface operations
 - Operability, weight constraints
 - 50°C in access drifts during emplacement period
 - Radiation shielding

Temperature in Repository 21PWR MPC, 25 ft. Drift, 57 kW/acre

10-year-old fuel, 40 GWd/MTU burnup

Thermal-Loading Decision Strategy

•

Decision Strategy for Thermal Loading

- Goal: Develop a Civilian Radioactive Waste
 Disposal System (CRWDS) in which all
 system elements contribute to meeting
 applicable regulatory requirements
 - Mined Geologic Disposal System (MGDS) (pre-closure and post-closure)
 - Monitored Retrievable Storage (MRS) and transportation
- Strategy: Enhance the performance of the CRWDS by appropriate use of the repository waste heat

Thermal-Loading Decision

Requires Integration of

- Site characterization
- Design
- Performance Assessment
- MPC studies

Through

- Thermal-loading study
- Modeling and code development
- Laboratory and field testing
- Performance calculations
- MPC design studies

Thermal-Loading Interactions

THERLBW2.CDR.121/10-28-93

Decision Risks

.

Large MPC Capacity Considerations for MGDS

- Waste Package Design Goal: no loading requirements beyond maximum acceptable assembly heat defined by design-basis fuel
- If MPC loading can be managed with selection/blending, then higher capacity MPCs can be accommodated in repository emplacement
 - Fuel age requirements/differential loading

or

- Leaving center assembly spaces open (derating)
- Thermal strategy

Decision Risks

- The program recognizes that proceeding with MPC has some risk
 - MPC is less flexible if local boiling is to be minimized
 - Thermal-loading decision will probably not be made until 1997-1999
 - Some early MPCs may end up dual-purpose
- The thermal-loading decision will be based on scientific evidence expected in the 1997-1999 time frame
 - Dependent on subsurface test data
 - By that time, only about 100 to 200 MPCs probably will have been constructed