U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD ENGINEERED BARRIER SYSTEM, TRANSPORTATION, AND SYSTEMS JOINT PANEL MEETING

SUBJECT:

EFFECTS OF PROLONGED DRY-

STORAGE

ON STORAGE AND TRANSPORTATION

PERFORMANCE OF MPCs

PRESENTER:

JIM CLARK

PRESENTER'S TITLE AND ORGANIZATION:

DEPUTY MANAGER, STORAGE & TRANSPORTATION CRWMS M&O (E. R. JOHNSON ASSOCIATES INC.)

PRESENTER'S

TELEPHONE NUMBER:

(703) 204-8920

Dallas, Texas November 1-2, 1993

Recent Studies

- Sandia Report SAND88-2482, November 1991
 - Considerations applicable to the transportability of a transportable storage cask at the end of the storage period
- PNL Report PNL-8072, April 1992
 - Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel
- EPRI Report EPRI TR-102462, June 1993
 - Shipment of spent fuel in storage canisters

Sandia Report - TSC Considerations

- Sponsored by OCRWM
- Briefed to NWTRB on January 6, 1993
- Important Technical and Regulatory Considerations
 - Containment, criticality control, heat transfer, shielding
- Recommended Evaluation Process
 - Fuel and cask monitoring (extend present database)
 - Evaluations of control casks (corrosion of welds)
 - Pre-transport functional testing (seals)
 - Administrative process, including recordkeeping for fuels and casks (document storage conditions)

PNL Report - Foreign Experience

- Sponsored by OCRWM
- Reviews Mechanisms for Degradation
- Indicates World-Wide Status and Plans for Dry Storage
- Documents Expected Long-Term Integrity

Selected Countries Spent Fuel Storage Highlights PNL Report

- Canada (Since 1980)
 - 600 MTU of CANDU in dry concrete concrete cask
 - Temp limit 150°C in air
- United Kingdom (Since 1972)
 - 100's MTU of Magnox in vault storage
 - CO₂ storage short-term, then air
 - Clad limit 365°C in CO₂, 150°C in air
- Germany (Since 1979)
 - 3000 LWR rods tested
 - Inert gas at 250-430°C
 - About 2 year dry storage

PNL-8072 Conclusions

- LWR Integrity for Long-Term Storage in Inert Gas at 320-400°C Considered Proven by Countries Surveyed
- Relatively Few Results on Effects of Long-Term Storage in Air of Defective LWR Fuels

Shipment of SNF in Storage Canisters EPRI TR-102462

- Prepared by Pacific Nuclear
- 20 Year to 50 Year Dry Storage
- Specific Aging Phenomena
 - Radiation-induced
 - Thermally-induced embrittlement
 - Creep at elevated temperature
 - Corrosion

Shipment of SNF in Storage Canisters EPRI Report

Conclusions

- Radiation and Thermally-Induced Embrittlement Pose Little or No Risk
- Expected Temperatures are Not High Enough to Postulate Deformation Due to Creep
- Only Significant Potential is Corrosion
- With Proper Material Selection and Corrosion Allowance, No Significant Effects Identified Which Would Preclude Transportation After Extended Storage

Prior OCRWM Dry-Storage RD&D Projects

- Performance Testing of Six Systems (1986-1992)
- Heat Transfer and Shielding Code Developments (1985-Present)
- Spent Fuel Oxidation Testing (1983-1990)
 - Final report (PNL-6640 Volume 3) due in November

New OCRWM Project: Spent Fuel Behavior in Long-Term Storage

- FY 1994 FY 2000
- Purpose
 - Confirm long-term dry storage can be conducted safely
 - Provide information for the on-going designs of MRS, ISFSIs and MPCs
 - Provide information for dry SNF cask-to-cask transfer designs
- Use Two Existing Loaded Casks at INEL
- Continue Routine Cask Monitoring

Spent Fuel Behavior Project (Cont'd)

- Initiate Enhanced Monitoring
 - Quarterly gas sampling (FY94)
 - Fuel assembly inspections (FY95 and 5 years)
 - Sampling and analysis of fuel rod corrosion products (crud)
 - Measurement of seal integrity
 - Metal and concrete sample coupons