
· · · · · · · · · · · · · · · · · · ·	ENT OF ENERGY	
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT		
ENGINEERED BARRIER SYSTEM, T	INICAL REVIEW BOARD RANSPORTATION AND SYSTEMS EL MEETING	
	-PURPOSE CANISTER M DEVELOPMENT AND ING	
PRESENTER: RONALD	A. MILNER	
PRESENTER'S TITLE AND ORGANIZATION: Asso	ciate Director, Office of Storage and	
	sportation.	
PRESENTER'S		
TELEPHONE NUMBER: (202)	586-9694	
•	Texas 1-2, 1993	

System Operational Concept with Multi-Purpose Canisters

Multi-Purpose Canister (MPC) System

MPC Conceptual Design Basis

- Meet the requirements of:
 - 10 CFR 71 Packaging and Transportation of Radioactive Material
 - 10 CFR 72 Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste
- Be compatible with the requirements of:
 - 10 CFR 60 Disposal of High-Level Radioactive Waste in Geologic Repositories
- Incorporate utility requirements
- Openly review MPC concept with all stakeholders

Waste Acceptance Requirements for MPC Conceptual Design

- Initial requirements
 - Maximize amount of SNF per canister
- Constraint
 - SNF has different physical, nuclear, and thermal characteristics

•	Design basis SNF characteristics:	<u>PWR</u>	<u>BWR</u>
	— Maximum length (in)	180	180
	— Maximum width (in)	9	6
	 Maximum weight (lbs) 	1720	730
	— Burnup (MWd/MTU)	40,000	40,000
	— Enrichment (wt% U-235)	3.75	3.75
	— Decay (yrs)	10	10
	— Decay Heat (kW/assembly)	0.675	0.317

Utility Requirements for MPC Conceptual Design

- Initial requirements
 - Maximize number of utilities
 - Suitable for on-site dry storage
- Constraints
 - Transportation mode
 - « Rail compatible
 - « Truck compatible

102 facilities

- 19 facilities
- Handling capability if rail compatible (cask weight)
 - « >125 tons
 - « 100-125 tons
 - « 75-100 tons
- ALARA
- Design basis
 - 125 ton cask
 - 75 ton cask
 - Truck cask
 - Welded closure
 - 9 foot diameter
 - Utility Transfer System

- 56 facilities
- 32 facilities
- 14 facilities
- 88 facilities
- (32 with MPC transfer cask)
- **14 facilities**
- **19 facilities**

Transportation Requirements for MPC Conceptual Design

- Initial requirements
 - Maximize use of rail facilities
 - Minimize number of shipments
 - 10 CFR 71
 - « Dose rate: surface <200 mrem/hr, at 2 meters <10 mrem/hr</p>
- Constraints
 - Operate rail cars in unrestricted interchange (maximum width 128 in., maximum car weight 394,500 lbs.)
 - Cask exterior surface temperature: <82°C
 - Criticality control: k_{eff} <0.95
 - --- Peak cladding temperature: 10-year-old SNF <340°C, 5-year-old SNF <380°C
 - Transportation overpack compatible with MPC
- Design basis
 - 125 ton maximum
 - Transportation accident requirements
 - « Burnup credit for criticality control
 - « Flooded conditions for criticality control

- 7

« No containment credit for MPC shell

Interim Storage Requirements for MPC Conceptual Design

- Initial requirements
 - Service life of 100 years
 - Transportable after long-term storage
 - 10 CFR 72
- Constraints
 - Criticality control: k_{eff} < 0.95
 - -- Peak cladding temperatures: 10-year-old SNF <340°C, 5-year-old SNF <380°C
 - Storage overpack/interim storage facility at utilities compatible with MPC
- Design basis
 - Containment credit for MPC
 - No internal inspection prior to transportation after storage

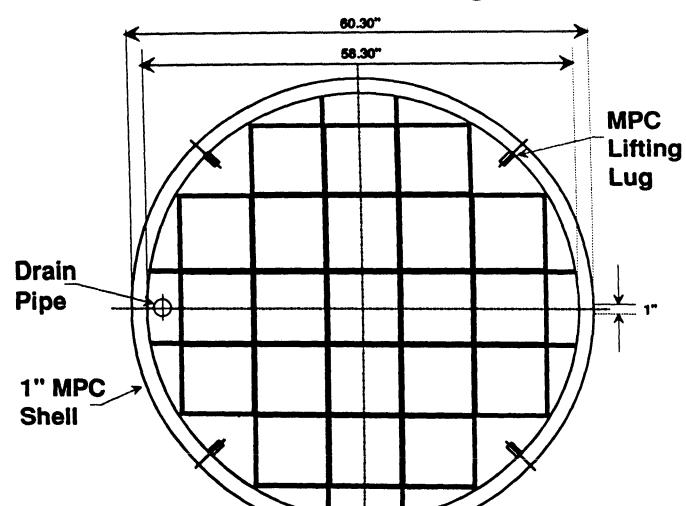
Disposal Requirements for MPC Conceptual Design

- Initial requirements
 - MPC compatible with baseline thermal loading approach
 - « Waste package exterior temperature: >100°C
 - « Near field temperature: >100°C
 - « Areal loading: 30 114 kW per acre
 - MPC compatible with requirements of 10 CFR 60
 - Criticality control: subcritical by five percent margin in k_{eff}, after uncertainties
- Constraints
 - --- Peak cladding temperature: <350°C
- Design basis
 - Overpack is primary engineered barrier
 - Credit will be taken for all elements, as appropriate, including fuel cladding, MPC shell
 - Burnup credit for criticality control

Key Trades

Issue	Alternatives	Rationale
Storage		
 MPC closure mechanism 	Welded, Boited	Minimize storage monitoring; crevice corrosion concern
Economics		
 MPC shell material 	Stainless Steel, Carbon Steel, Alloy 825	Cost; transportability after long- term storage
Large MPC capacity	24 PWR vs. 21PWR	Thermal constraint on cladding in repository (under review)
Criticality and Thermal		
 Filler material 	Yes, No, <u>Maybe</u> Loading, <u>Emplacement</u>	Firm requirement not established
 Burnup credit for large PWR MPC 	21 PWR capacity with, 17 PWR capacity without	Cost, shipment reduction
 Basket neutron absorber lifetime, physical integrity 	Borated aluminum, Borated stainless steel	Heat transfer; lifetime at least equal to canister (under review)

RD&D Strategy for Unresolved Issues

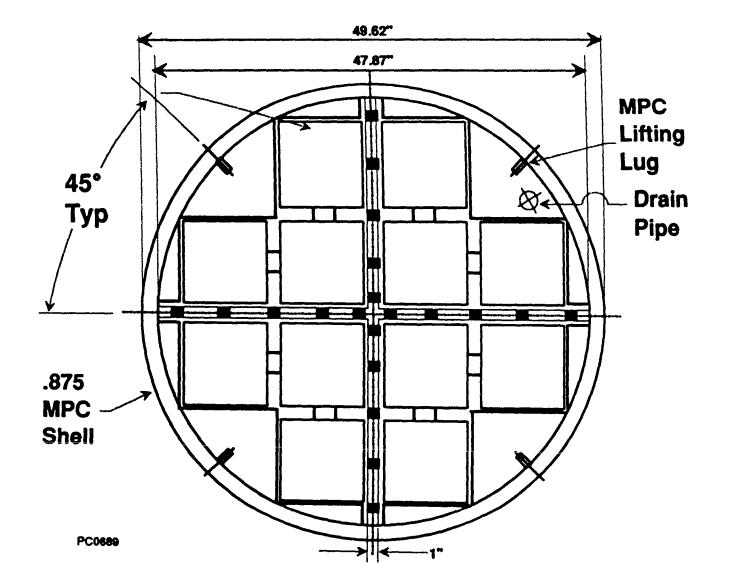

- Criticality Control
 - Topical report working group being formed
 - Will brief NRC on long-term criticality evaluation needs 11/30/93
 - Topical report presentation planned early '95
- Thermal Loading
 - -- MGDS thermal loading study FY 93-94
 - Follow-on system studies FY 94-01
 - Large heater block tests FY 94-95
 - Abbreviated heater tests FY 96-99
 - ESF heater tests FY 96-01
 - Anticipated decision time frame FY 97-99
- Burnup Credit
 - Management meeting 8/27/93
 - First technical exchange 11/30-12/1/93
 - Three topical reports planned
 - « For storage and transport PWR SNF submitted 9/94
 - « For disposal PWR/BWR SNF submitted 9/95
 - « For storage and transport BWR SNF if needed
 - One year NRC turnaround requested

Conceptual Designs for MPC

Size	Capacity	Reactors Served	Number of Assemblies	
• 125 Ton MPC	21 PWR	64	109,000	
	40 BWR	24	112,000	
• 75 Ton MPC	12 PWR	5	8,000	
	24 BWR	9	33,000	

 Remainder of projected 298,000 SNF assemblies would be picked up from reactors in truck casks.

4


45° Typ

125 - Ton 21 PWR Configuration

PC0687

.

75 - Ton 12 PWR Configuration

Contingencies

MPC Not Emplaceable

- Cause:
 - « Incompatible with repository requirements, including criticality control and thermal loading
- Impact:
 - Additional cost to open, then rework, redesign and dispose, or convert to dual purpose MPC system
 - « Dual purpose MPC is upper bound of impact, could add up to \$500 million to program cost

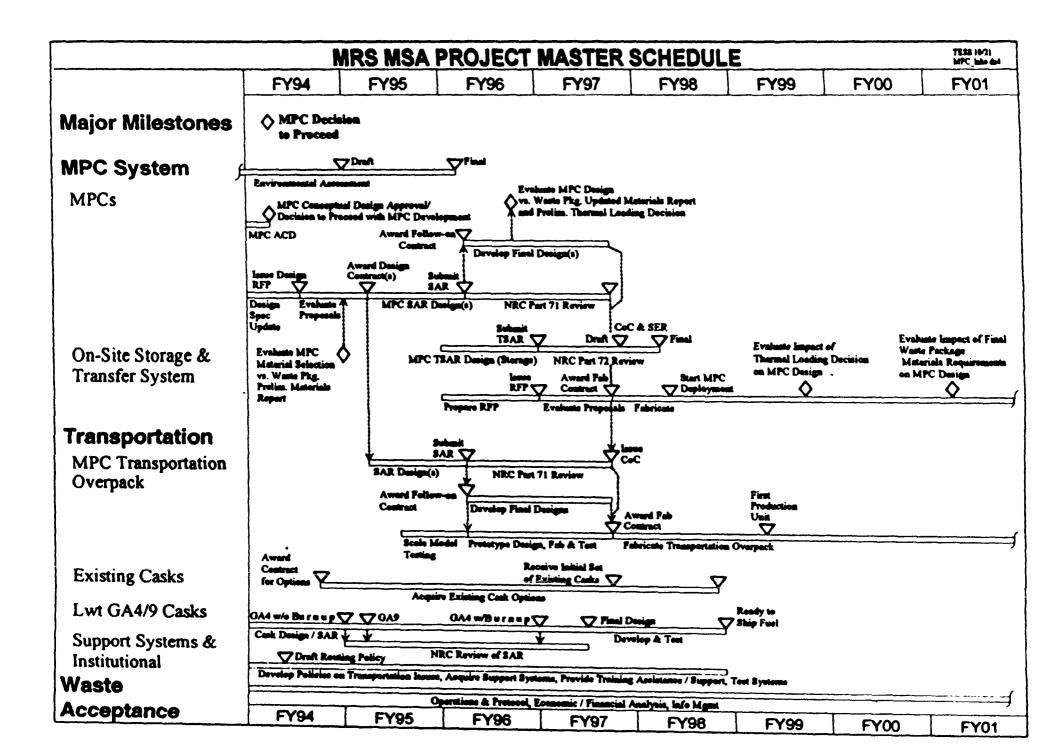
• MPC Not Transportable After Long-Term Storage

- Cause:
 - « Uncertainty over condition of basket and contents
- Impact:
 - « Additional cost to open, then rework or design and dispose
 - « Could add up to \$500 million to program cost
- No MRS
 - Cause:
 - Failure to obtain MRS site consistent with system requirements
 - -- Impact:
 - « Increased at-reactor dry storage, increased system costs
 - « MPC mitigates impact

MPC Conceptual Design Report Products

- Volume I Summary Report
- Volume II Conceptual Designs
 - MPC
 - Transportation Cask
 - MRS
 - Utility Transfer System
- Volume III Draft RFP and Design Specifications (Procurement Sensitive)
- Volume IV Cost and Schedule
- Volume V Supporting Studies (Concept of Operations, Repository and Regulatory Considerations, others)
- Other related products

 (Life Cycle Cost, Risks and Contingencies, Health and Safety, Alternative Cask/Canister Concepts)


4.0

Factors for Decision to Proceed with MPC

- Should DOE incorporate an MPC system into the baseline and commence design?
- Primary criteria evaluated for nominal case and contingencies
 - Health and safety
 - Life cycle cost
 - Licensing and regulatory compliance
 - Stakeholder acceptance
 - Waste acceptance schedule
 - Standard contract impacts
 - Flexibility in overall waste system
- Inputs to decision process
 - Conceptual Design Report
 - IMRG review
 - EEI review
 - Stakeholder workshop
 - Environmental input
 - NRC
 - NWTRB

MPC System Schedule

- MPC Schedule
 - Decision on proceeding with MPC change to technical cost/schedule baseline - January '94
 - Issue RFPs for MPC design contracts April '94
 - Award MPC design contracts December '94
 - MPC Safety Analysis Report Design completed for License Application submission to NRC - December '95
 - Complete final Environmental Assessment for MPCs December '95
 - MPC system prototype testing complete March '97
 - NRC issue Certificate of Compliance for MPCs under 10CFR71 and 10CFR72 - June '97
 - Issue RFPs for MPC fabrication September '96
 - Award MPC fabrication contracts June '97
 - Start MPC deployment January '98
 - Waste Package License Application Design activities start June '96; completed 2001

MPC Conceptual Design Conclusions

- Report asserts MPC approach offers advantages
 - Initial investment that should reduce national cost
 - Provides flexibility in interim storage system
 - Facilitates system standardization
 - Reduces bare SNF handlings
- MPC contingencies need to be addressed through
 - Analysis
 - Research
 - Design
- Decision making approach must encompass
 - Regulatory
 - Programmatic
 - Technical
 - Stakeholder