| · · · · · · · · · · · · · · · · · · ·  |                                                                    |
|----------------------------------------|--------------------------------------------------------------------|
| OFFICE OF                              | U.S. DEPARTMENT OF ENERGY<br>CIVILIAN RADIOACTIVE WASTE MANAGEMENT |
| NUCLEAR<br>ENVIRONMENT                 | WASTE TECHNICAL REVIEW BOARD<br>AND PUBLIC HEALTH PANEL MEETING    |
| SUBJECT:                               | YUCCA MOUNTAIN PROJECT<br>DESERT TORTOISE PROGRAM                  |
| PRESENTER:                             | DANNY RAKESTRAW                                                    |
| PRESENTER'S TITLE<br>AND ORGANIZATION: | DESERT TORTOISE PROGRAM MANAGER<br>EG&G ENERGY MEASUREMENTS        |
| PRESENTER'S<br>TELEPHONE NUMBER:       | (702) 794-7475                                                     |
|                                        | LAS VEGAS, NEVADA<br>NOVEMBER 22, 1993                             |

### YMP DESERT TORTOISE PROGRAM

- Program Development
- Program Objectives
- Studies

### **PROGRAM DEVELOPMENT**

- 1. History
- 2. Goal Identification
- 3. Literature Review

### PROGRAM DEVELOPMENT HISTORY

**Petitioned for Listing in 1984** 

Listed in August 1989

**Biological Assessment Written in 1989** 

"No Jeopardy" Biological Opinion Rendered in 1990

**Incidental Take of 15 Tortoises Allowed** 

**Terms and Conditions Required the Program** 

### GOAL OF THE YMP DESERT TORTOISE PROGRAM

### To Conserve the Tortoise Population at Yucca Mountain and Ensure Compliance with the Endangered Species Act

- 1. Potential impacts of site characterization activities
- 2. Efficacy of mitigation techniques for minimizing impacts
- 3. Ecology of the desert tortoise

- **1.** Potential impacts of site characterization activities
- Types of activities <2 ha disturbed per activity >2 ha disturbed per activity
- Types of impacts Direct and/or Immediate Indirect and/or Cumulative
- Conclude: Direct negative effects and subtle cumulative effects must be addressed to achieve the goals of this program

Large and small disturbances should be considered

- 2. Efficacy of mitigation techniques for minimizing impacts
- Some information on the impacts of grazing, roads, and off-road driving
- No information on impacts similar to Site Characterization
- Little information on the efficacy of techniques to mitigate impacts
- Conclude: It is necessary to study the effectiveness of techniques to be used to mitigate impacts

- 3. Ecology of the desert tortoise
- Information is available on physiology, growth, and relative abundance
- Less known about movements, behavior, and survival, especially of small tortoises
- Tortoises at Yucca Mountain may differ from southern populations
- Conclude: It is necessary to study those aspects of the ecology of desert tortoises at Yucca Mountain needed to fulfill program goal



### **PROGRAM OBJECTIVES**

- 1. Evaluate impacts of site characterization activities on tortoises
- 2. Mitigate impacts of site characterization activities to the maximum extent possible in order to minimize incidental take
- 3. Develop and test the efficacy of mitigation techniques
- 4. Obtain site-specific information on desert tortoise biology needed to achieve these other objectives

# STUDIES

### **Studies/Procedures Addressing Direct and Immediate Effects**

- Preactivity Surveys
- Impact Mitigation
- Relocation and Displacement
- Road Monitoring
- Ground Motion Effects

### **Studies Addressing Cumulative and Indirect Effects**

- Reproduction
- Survival
- Behavior and Movements
- Health
- Diet
- Raven

## **PREACTIVITY SURVEYS**

#### OBJECTIVE

Identify and Mitigate Direct Impacts

### METHOD

Survey Area Prior to Activity

### **MITIGATION**

- Mitigation of Direct Impacts
- Flagging and Avoidance of Burrows
  - Relocation of the Activity
  - Redesign of the Activity
  - Monitoring Tortoises Near Construction
  - Relocation of Tortoise
- Evaluate Effectiveness after each Activity and during Post-Activity Surveys

# **IMPACT MITIGATION STUDY**

### OBJECTIVE

 Obtain information necessary to mitigate impacts on tortoises in areas that will have large, long-term disturbances

#### METHOD

 Tortoises in proposed high-impact areas are radiomarked and monitored up to one year prior to start of activity

### RESULTS

• Three Impact Mitigation Study sites have been established

#### MITIGATION

Identification of best techniques for protecting specific tortoises



## RELOCATION AND DISPLACEMENT STUDY

### OBJECTIVE

 Develop, implement, and test methods for moving tortoises out of areas that will be disturbed

#### METHOD

 Originally planned on moving tortoises out of the Yucca Mountain area if >25% of home range was to be destroyed

### RESULTS

First tortoise that was relocated moved >30 km



## RELOCATION AND DISPLACEMENT STUDY

#### **REVISED METHOD**

- Tortoises will be moved within their home range when possible
- If a large portion of their home range will be disturbed, tortoises will be moved to a safe area within Yucca Mountain area
- Tortoises will be removed from Yucca Mountain only if they continue to return to construction sites

#### RESULTS

- 15 tortoises were moved in 1993
  - 2 tortoises moved outside of home range
  - 13 tortoises moved within home range

#### **MITIGATION**

Evaluate success of each relocation and modify mitigation recommendations if necessary

# **ROAD MONITORING STUDY**

#### OBJECTIVE

• Minimize mortalities of tortoises on roads

#### **METHOD**

- Monitor sightings and mortalities of tortoises along roads
- Assess information annually to determine if mitigation is required to reduce mortalities along roads
- If necessary, develop and test mitigation techniques

#### RESULTS

- 155 sightings of tortoises on roads since 1989
- 4 tortoises killed on roads since 1989 (1 Incidental Take)

#### MITIGATION

 Warning signs placed in areas of highest tortoise activity, but further mitigation not warranted at present



# **GROUND MOTION EFFECTS STUDY**

#### **OBJECTIVES**

• Determine if ground motion caused by site characterization activities collapses tortoise burrows or causes tortoises to alter their behavior

#### **METHODS**

- Monitor behavior of tortoises during and after ground motion
- Measure burrows near seismic shot holes before and after ground motion

#### RESULTS

- One set of seismic studies monitored. No changes were noted one week after the event.
- Burrows and tortoises at North Portal not affected

#### MITIGATION

• None to date

### **CUMULATIVE IMPACTS**

- The combined effects of all types of activities will be evaluated
- Because effects may be subtle, sampling is being done over a long period and on many parameters important to tortoise populations

# PARAMETERS BEING MEASURED

- **Reproduction Study** 
  - Eggs Produced per Female
- Survival Study •
  - Nest Survival
  - Hatchling Survival
  - Adult Tortoise Survival
- Behavior/Habitat Use Study •
  - Home Range Size
  - Shift in Home Range
    Percent of Time Active

  - Length of Hibernation
  - Number of Burrows/Number of new Burrows
- Health Study •
  - Growth
  - Condition Index
  - *Mycoplasma agassizii* Antibody Test
    Blood Profiles
- Diet Study ٠
  - Species Composition
- **Raven Study** ٠
  - Abundance

# DESIGN

- Sampling radiomarked tortoises at three levels of impact
  - 1. High Impact
  - 2. Area Wide
  - 3. No Impact Control
- Number of Radiomarked Tortoises Monitored

|             | <u>1991</u> | <u>1992</u> | <u>1993</u> |
|-------------|-------------|-------------|-------------|
| High Impact | 37          | 41          | 43          |
| Area Wide   | 23          | 26          | 22          |
| Control     | 25          | 23          | 24          |



## **OBJECTIVES**

- Evaluate Cumulative Impacts on Tortoises
- Obtain Site-Specific Information on Desert Tortoise Biology to Aid in Conserving Tortoises at Yucca Mountain

### REPRODUCTION

#### PARAMETER MEASURED

• Eggs Produced per Female

#### **METHODS**

- 1992 found nests and counted eggs
- 1993 x ray

#### RESULTS

|              | $\overline{\varkappa}$ Number of E | ggs/Female |  |
|--------------|------------------------------------|------------|--|
|              | 1992                               | 1993       |  |
| High Impact  | 13.0 (n=2)                         | 8.2 (n=5)  |  |
| Control Area | 8.0 (n=1)                          | 8.3 (n=4)  |  |

YMTRTDP21.PM4.125.NWTRB/11-19-93

## REPRODUCTION

### ADDITIONAL RESULTS

Eggs laid: 16 May - 4 July

Incubation: 79 to 112 days Incubation duration is negatively correlated with nest temperature

Hatching date: 21 August - 11 October



## SURVIVAL

### PARAMETERS MEASURED

• Survival rates of adults, hatchlings, and nests

#### **METHODS**

Monitor radiomarked tortoises and nests

#### RESULTS

• Monitored 20 adult tortoises in each of the three treatments

|             | Adult Annual Survival |      |
|-------------|-----------------------|------|
|             | 1992                  | 1993 |
| High Impact | 100%                  | 100% |
| Area Wide   | 95%                   | 95%  |
| Control     | 100%                  | 00%  |

### SURVIVAL (Continued)

**RESULTS** (Continued)

- Hatchling data inadequate for treatment comparisons, but native fire ants appear to be a significant predator
- Monitored all nests found; only the high-impact and control levels were represented

|             | Nest Survival |             |
|-------------|---------------|-------------|
|             | 1992          | 1993        |
| High Impact | 100% (n=8)    | 100% (n=10) |
| Control     | 100% (n=3)    | 89% (n=9)   |

### **BEHAVIOR / HABITAT USE**

### PARAMETERS MEASURED

- Home Range Size
- Shift in Home Range
- Percent of Time Active
- Length of Hibernation

#### **METHODS**

- Locate radiomarked tortoises twice per week during activity period
- Record information on location, use of cover sites, behavior

#### RESULTS

- Assumptions of usual home range calculations violated; other estimators are being evaluated
- Length of hibernation (P=0.60) and percent of time active (P=0.47) did not differ among the 3 treatment levels during 1992-1993

### **BEHAVIOR / HABITAT USE**

#### **ADDITIONAL RESULTS**

- 97% of radiomarked tortoises started hibernation before 15 November (n=179)
- 97% of radiomarked tortoises did not exit hibernation until after 1 March (n=184)
- Resurveys and construction monitoring are not needed from 1 December through 1 March

### Percent of Tortoises Hibernating, 1989-92



### Percent of Tortoises Hibernating, 1990-93



## HEALTH

#### PARAMETERS MEASURED

- Growth
- Condition Index
- Mycoplasma agassizii antibody test
- Blood Profiles

#### METHODS

- Measure growth and calculate condition index annually in the fall
- Collect blood to measure antibody response and health profiles

#### RESULTS

- Condition index did not differ among groups over three years (*P*=0.56)
- Growth data has not been analyzed
- Blood profile data was just received from the lab
- Antibody response did not differ among groups (P=0.30)

|             | <u>Number</u> | Positive in 1993 |
|-------------|---------------|------------------|
| High Impact | 4             | (n = 18)         |
| Area Wide   | 2             | (n = 14)         |
| Control     | 1             | (n = 14)         |

### DIET

### PARAMETER MEASURED

Species Composition

#### **METHODS**

- Count number of bites per forage species during forage observations
- Collect scat from desert tortoises at Yucca Mountain and control area

#### RESULTS

 Composition analysis of 1992 and 1993 samples has not been completed by lab

### DIET

#### ADDITIONAL RESULTS

#### **10 Most Commonly Eaten Species**

#### **Common Name**

Red Brome Fluffgrass Desert Globemallow Lupine Foothill Deervetch Cactus Bristly Fiddleneck Storksbill Saltbushes Galleta

#### Scientific Name

Bromus rubens Erioneuron pulchellum Sphaeralcea ambigua Lupinus spp. Lotus humistratus Cactaceae Amsinkia tessellata Erodium cicutarium Atriplex spp. Hilaria jamesii

Based on 1990-1991 scat samples and 1992-1993 feeding observations

# **RAVEN MONITORING**

#### OBJECTIVES

- Determine if site characterization activities cause an increase in raven abundance
- Monitor use of site characterization activities facilities by ravens and identify where ravens congregate
- Recommend how to discourage ravens from using site characterization activities facilities

#### **METHODS**

- Count ravens along routes at Yucca Mountain and Crater Flat/Bare Mountain (control route) five times every other month
- Record use of facilities by ravens seen during counts

### **RAVEN MONITORING**

#### RESULTS

- More ravens were observed at Yucca Mountain than on the Control Route (*P*=0.0234)
- More ravens were observed in FY93 than in FY92 (*P*=0.0371), but this trend was not the same for all months (Month × Fiscal Year interaction significant, *P*=0.0186)
- Since treatment by time interaction was not significant (P=0.7306)for FY92 and FY93, conclude that site characterization activities did not cause an increase in raven abundance at Yucca Mountain during FY93

# Sum of Raven Sightings by Fiscal Year



### IDENTIFICATION AND MITIGATION OF CUMULATIVE IMPACTS

- Identification of Cumulative Impacts
- Results Reviewed Annually to Identify Mitigation Methods