U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT	
NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING	
SUBJECT: MPC CONCEPTUAL DESIGN	
PRESENTER: ALDEN M. SEGREST	
PRESENTER'S TITLE AND ORGANIZATION: MANAGER, MPC IMPLEMENTATION CRWMS M&O (DUKE ENGINEERING & SERVICES, INC.)	
PRESENTER'S TELEPHONE NUMBER: (704) 382-3094	
DALLAS, TEXAS NOVEMBER 2, 1993	

MPC Conceptual Design

MPC Design Concepts

1

- Fuel Acceptance Design Approach
- Fuel Characteristics Minimum Requirements
- MPC Fuel Acceptance
- MPC Implementation

; * .

Reference Concepts

Size	Capacity	Criticality Approach	Reactors Served
125 Ton	21 PWR	w/Burnup Credit	88
MPC	40 BWR	w/o Burnup Credit	
75 Ton	12 PWR	w/o Burnup Credit	
MPC	24 BWR	w/o Burnup Credit	14

Alternative Concepts

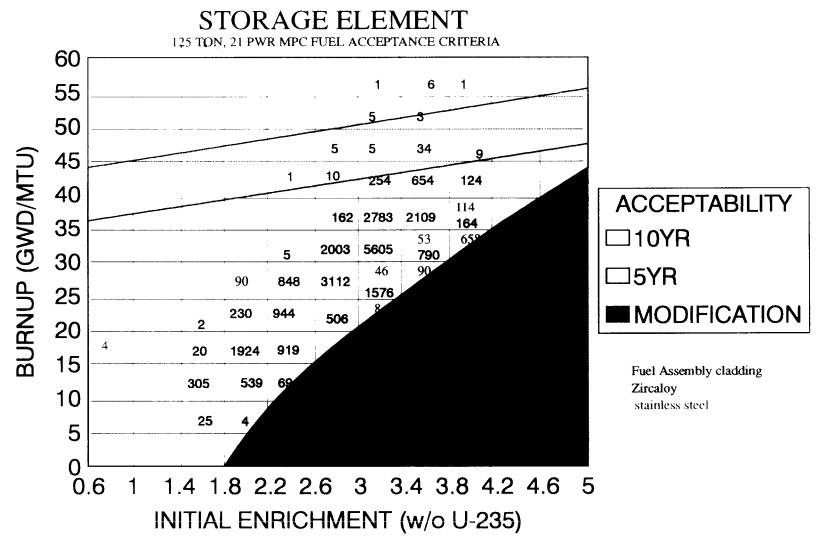
125 Ton	17 PWR	w/o Burnup Credit	
MPC	24 PWR	w/Burnup Credit	88

Fuel Acceptance Design Approach

- Establish minimum requirements
- Use of cost effective design features to exceed minimum requirements
- Use lower capacity design where necessary

Fuel Characteristics Minimum Requirements

;-(


Parameter	PWR	BWR
Length (inch)	180	180
Width (inch)	9x9	6x6
Weight (pounds)	1,720	730
Age (years)	10	10
Enrichment (wt. percent)	3.75	3.75
Burnup (MWd/MTU	40,000	40,000
Decay heat (watts/assembly)	675	317

Fuel Characteristics Considerations

- Accommodate multiple assembly types and a wide range of enrichments and burnup characteristics
- Minimize decay time restrictions with goal to maximize number of assemblies qualifying at 5-years out-of-reactor consistent with standard contract

Exceeding Minimum Requirements

- Extensive use of aluminum allows storage acceptance for most SNF at 5-year cooling
- Transportation cask radiological shielding can be easily tailored to accommodate most SNF at 5 to 10-year cooling
- MGDS should be capable of accommodating 10 to 20-year cooled SNF in large capacity MPCs (21 to 24 PWR assemblies)

^{*} Assumes thermal constraints are limiting.

Fuel Characteristics Accommodating Outliers

- Thermal Lower capacity MPCs and decay time
- Criticality Lower capacity MPCs, derating, or development of alternative designs
- SS Cladding Further study with canisterization a possibility

MPC Implementation for Storage

- Provide certified design of MPC
- Provide licensed design of storage unit
- Acceptance in 1998

.