

200 FEET IN THE MOUNTAIN

3 WEEKS AHEAD OF SCHEDULE

Scientific Studies Will Determine Whether Yucca Mountain can be Recommended as a Repository

PUMSTUAP6.CPG/5-24-93

LM-300 SCHEDULE FOR 40 DEEP BOREHOLES (SCP PLAN)

(Based on UZ-14 Performance)

-	Ur	Unescalated Costs	
	Тс	otal Per Ye	ar
28.6 yrs	Core = 3,500 ft/yr 1 rig 1 crew, 5 days 151	I.6M 5.3M	
7 .1 yrs Core = 14,000 ft/yr 1 rig 4 crews, 7 days	171	I.8M 29.5N	I
4.8 yrs Core = 21,000 ft/yr 2 rigs 6 crews, 5 days	184	1.2M 67.9N	I
Core = 28,000 ft/yr 2 rigs 8 crews, 7 days	222.	.1M 129.6M	Л
1.6 yrs 4 rigs 16 crews, 7 days		I/A · N/A	

Years

Α.

- * Basis 40 Deep holes @ 2,500 ft/hole = 100,000 ft core for program
 - 1 crew can drill out 3,500 ft core/year assuming 250 working days, 5 days/week, 50 weeks at 14 ft/crew.

WBS Elements

- (1) 1.2.3.5 Drilling
- (2) 1.2.3 Site Investigation
- (3) 1.2.7.3 FOC
- 1.2.13.2 Safety & Health 1.2.15.2 Administrative Support
- (4) 1.2.7.8 NTS
 - 1.2.9.2 Project Control
 - 1.2.13.3 Environmental Compliance

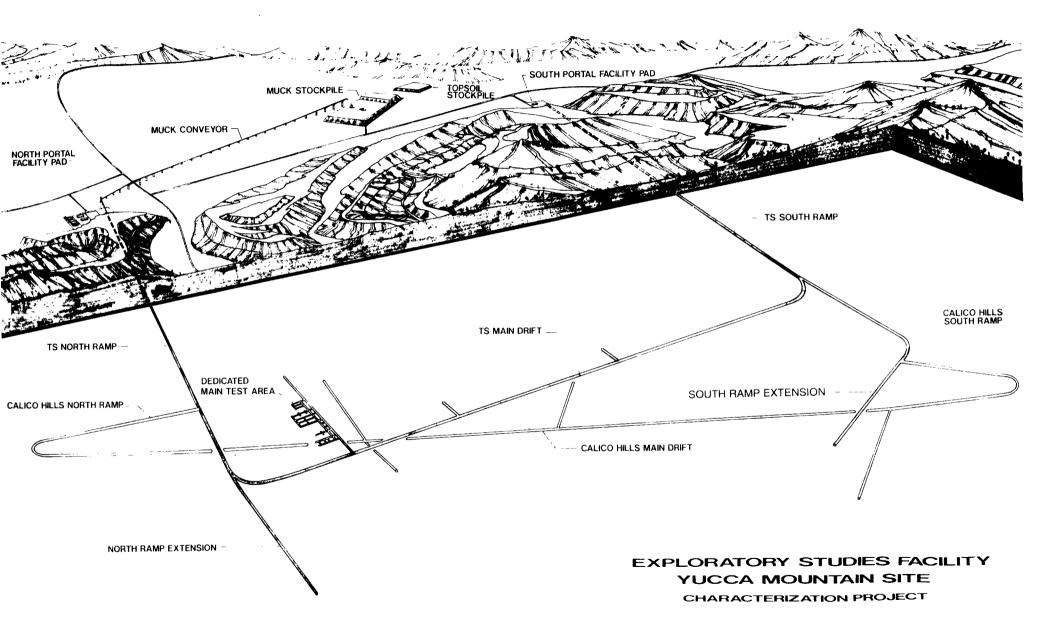
1.2.15.3 Training

- Assumptions
- Incremental Crew Cost Increases as a result of Weekend Rates
- B. Includes \$250K/Yr/Crew for drilling consumables
- C. Reflects increases due to concurrent work required with second LM-300
- D. Includes 10,000K 1 time capital cost for additional LM-300

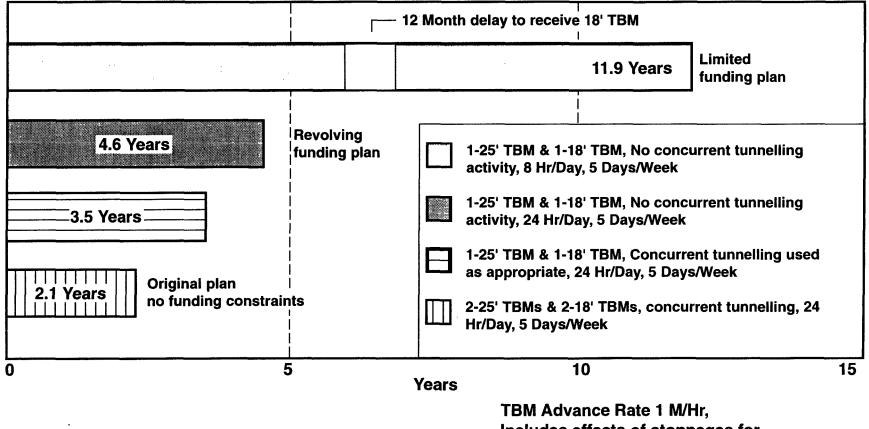
Unaccolated Costs

Surface-Based Testing Supports Resolution of Issues Including Regional Hydrology and Flow Rates, Seismic Hazard Analysis, and Volcanism

	Prior to 1987	1991- Sept. '93	Oct. '93- 2001
Boreholes	199	33	76 ¹
			58 ²
Trenches	95	24	25
Soil pits	0	108	40-50 ³


- ¹ 50 ft deep and greater
- ² 50 ft deep or less
- ³ as req'd based on 20 facilities

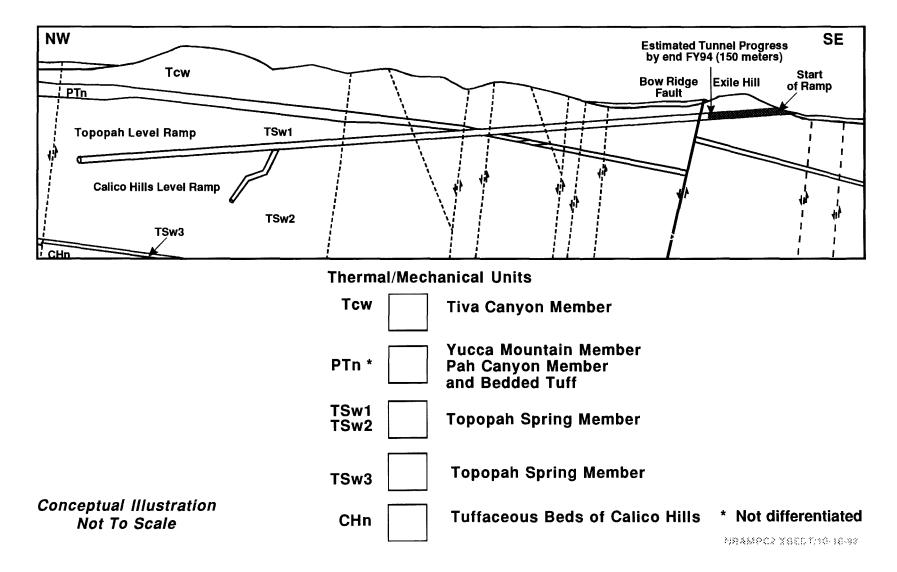
Work Underway at Several Locations


Summary

- 200 ft in the mountain, as of 9/9/93
- Initiated ESF testing with geologic mapping of the box cut and starter tunnel
- USW UZ-14 drilling began 4/15/93; 1391 ft depth, as of 10/14/93
- Drilling at borehole UZ-16 completed 3/11/93 at 1686 ft; water table was reached at a depth of 1604 ft; downhole testing currently underway
- 24 boreholes completed for natural infiltration studies program
- NRG-7 borehole planned to define geology transition section along the lower end of the north ramp
- 17 trenches excavated and 3 exposures cleared for Quaternary fault studies; detailed logging continues
- Fran Ridge large block test continues; ground preparation began for saw cutting of test block; preliminary cuts successfully performed

PROPOSED ESF DESIGN

ESF TBM TUNNELLING SCHEDULES BASED ON FUNDING AVAILABILITY



Total Length of TBM excavation 20,200M (66,272 ft)

IBM Advance Rate 1 M/Hr, Includes effects of stoppages for scientific work

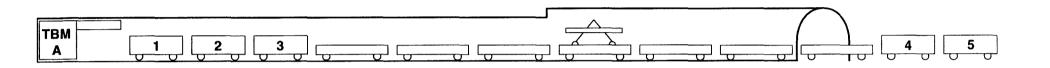
NEXTERANCE AND A

NORTH RAMP DESIGN WILL INCLUDE AREAS OF GEOLOGIC INTEREST TO BE STUDIED

720 tons

1) . 1 1 HI- ((

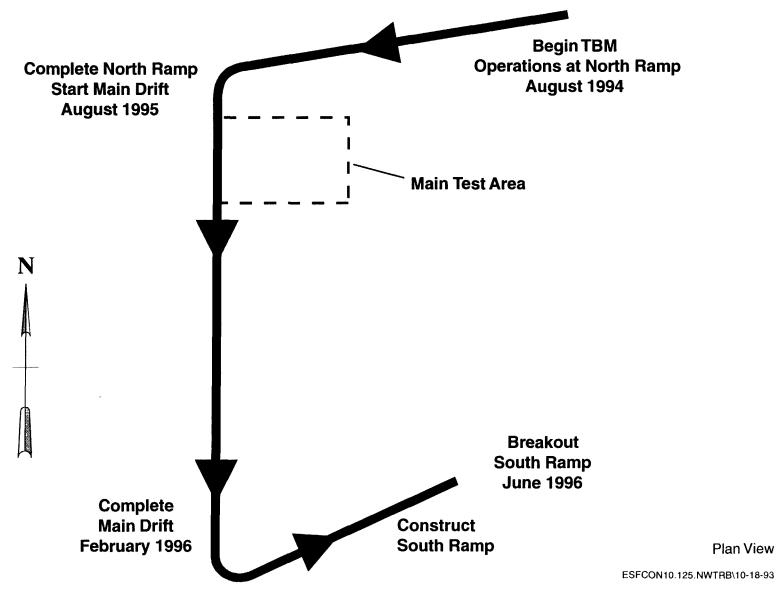
-

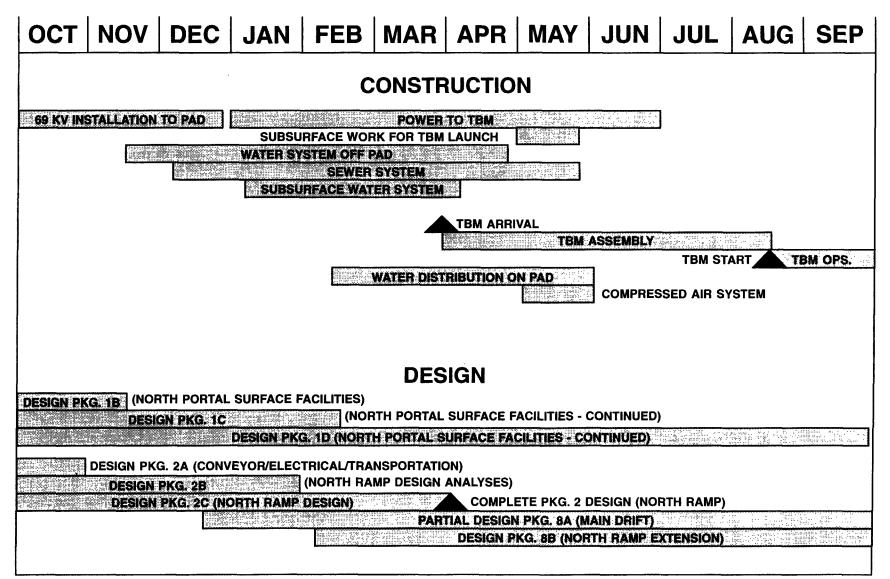

- 3,800 horse power
- 220 feet long
- (machine and trailing gear)25 feet in diameter (7.6 meters)
- 50-60 truckloads

.....

Limited operation begins July 94
Fully operational in December 94

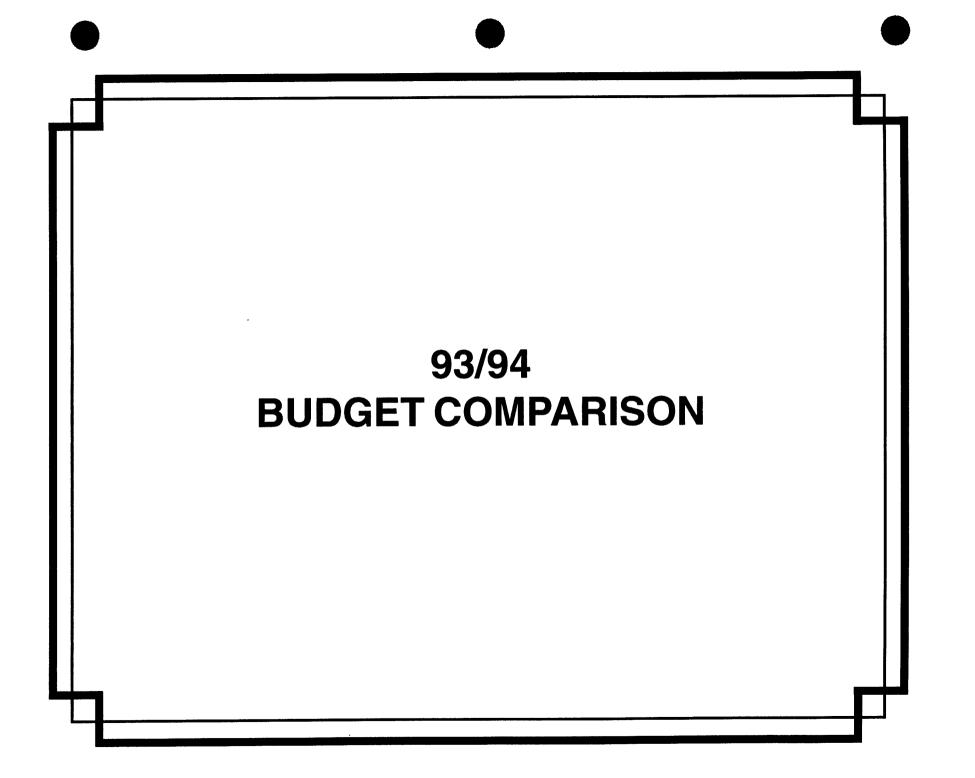
MAJOR TBM OPERATIONS


TBM Configuration


- A Cutter Head
- Car # Function/Contents
- 1 Transformers, Spare Cutter Rack,
- 2 Lunch Room, Toilet, First Aid Room
- 3 Shop Area
- B Mapping Platform on Trailing Floor Sections
- 4 Cable Storage, Ventline Cartridge, Conveyor Tailpiece,
- 5 Rock Bolt, and miscellaneous storage

Estimated total length = \sim 450 ft.

INITIAL 5-MILE RAMP/DRIFT LOOP WILL PROVIDE EARLY SITE SUITABILITY INFORMATION


FY94 ESF SCHEDULE

ESFHISTY25.126/10-19/20-93

August - September 1993 YMP Major Accomplishments

- Completed ESF starter tunnel to 200 ft (60 meters) ahead of schedule
- Underground subcontractor (Kiewit/PB) brought on board
- Blasting of test alcove started October 4, 1993
- Received drinking water system permit allowing construction work on ESF sewer and water line system
- Completed extensive archaeological field data recovery near Bare Mountain
- Held waste package workshop, attended by oversight groups
- Completed 24 hole neutron drilling program
- Semiannual Progress Report 8 released
- Submitted draft FY94 annual plan to OCRWM

Technica		FY93	FY94	94-93	Decreases	Increases
1.2.2	Waste Package	9.0	10.5	1.5		1.5
1.2.3	Site Investigations	54.6	58.9	4.3		4.3
1.2.4	Repository	4.9	5.0	0.1	0.0	0.1
1.2.5 1.2.6	Regulatory ESF	26.4 47.0	23.8 55.0	-2.6 8.0	-2.6	8.0
Total Tecl	hnical	141.9	152.0	11.3	-2.6	12.0
	lillical	141.9	153.2	11.3	-2.0	13.9
Infrastruc	ture					
1.2.1	Systems Engineering	6.3	5.8	-0.5	-0.5	
1.2.7	Test Facilities	10.5	12.9	2.4		2.4
1.2.9	Project Management	18.1	16.7	-1.4		
1.2.11		10.2	9.0	-1.2		
1.2.12	0	12.0	10.5	-1.5	-1.5	
1.2.13						
1011	& Health	15.1	14.7	-0.4	-0.4	• •
1.2.14		3.6	4.0	0.4		0.4
1.2.15	Support Services	21.9	20.0	-1.9	-1.9	
Total Infra	astructure	97.7	93.6	-4.1	-6.9	2.8
Total Tecl % Technic	nnical & Infrastructure cal	239.6 59.22%	246.8 62.07%	7.2	-9.5	16.7
1.2.10	Financial Assistance	17.6	19.6	2.0		2.0
Total (Inc	Financial Assistance)	257.2	266.4	9.2		

YMP FY94 Work Scope and Priorities

Exploratory Studies Facility

- Procure equipment required to start TBM operation: 69kV power line; muck handling system; underground ventilation equipment; stand-by generators and mine power equipment; and TBM service equipment
- Begin TBM operations in ESF north ramp
- Initiate testing in north ramp
- Conduct surface-based testing needed to support ESF design and construction

YMP FY94 Work Scope and Priorities

(Continued)

Compliance

- Maintain sound worker safety and environmental programs supporting field activities and construction
- Assure continued implementation of QA program through audits and surveillances

YMP Major Deliverables/Planned Accomplishments First Half of FY94

Deliverable/Accomplishment	Tentative Completion Date
 Submit topical report on Seismic Hazard methodology to NRC 	Nov 1993
 Combine Participant 1993 TSPA products into DOE TSPA position document 	Jan 1994
 Meet with Energy System Acquisition Advisory Board (ESAAB) 	First Qtr. FY94
 Continue construction and other preparations to receive TBM on site 	First Half FY94

YMP FY94 Major Activities

	Planned pletion Date
 Submit topical report on Seismic Hazard methodology to NRC 	C Nov 1993
 Combine Participant 1993 TSPA products into DOE TSPA position document 	Jan 1994
 Complete design of north ramp (Package 2) 	Mar 1994
 Receive 50-60 truckloads of TBM and TBM support equipment 	t Apr 1994
 Start TBM operations 	Aug 1994
 Complete design of north portal surface facilities (Package 1) 	Sep 1994
 Complete design of north ramp extension (Package 8B) 	Sep 1994
 Complete 2 UZ holes using LM-300 drill rig 	Sep 1994
 Start Systematic Drilling Program and complete 2 SD borehol 	es Sep 1994
 Complete 1 north ramp and 3 south ramp boreholes 	Sep 1994

200 FEET IN THE MOUNTAIN