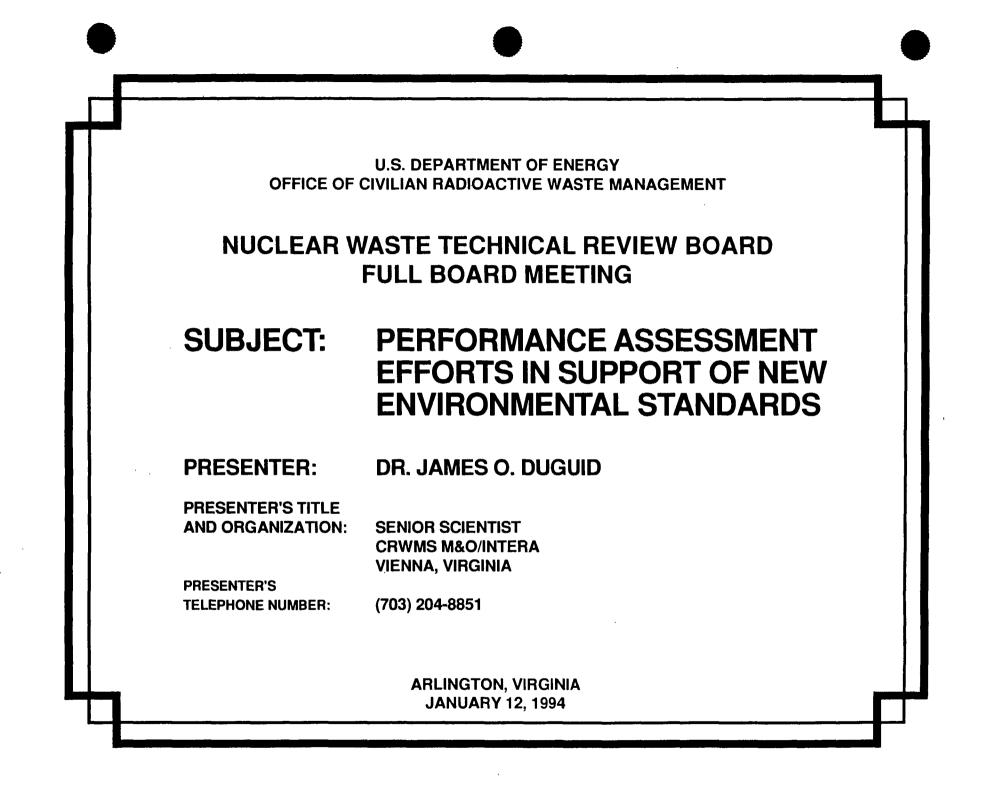
U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING

SUBJECT:

PERFORMANCE ASSESSMENT EFFORTS IN SUPPORT OF NEW ENVIRONMENTAL STANDARDS

PRESENTER:


DR. JAMES O. DUGUID

PRESENTER'S TITLE AND ORGANIZATION:

PRESENTER'S TELEPHONE NUMBER: SENIOR SCIENTIST CRWMS M&O/INTERA VIENNA, VIRGINIA

(703) 204-8851

ARLINGTON, VIRGINIA JANUARY 12, 1994

Objectives of Analyses

- To examine uranium ore bodies and parameter sensitivity of simple repository performance assessments as input to DOE positions on environmental standards for Yucca Mountain
- To provide input to the NAS Committee on Technical Bases for Yucca Mountain Standards

Outline

- Effects of uranium ore bodies
- Sensitivity analyses of simple performance assessments of Yucca Mountain
 - Using UCBNE-41, which is the model used by the NAS Waste Isolation System Panel (1983)
 - Comparison with RIP, which is the model used for TSPA-93
 - Comparison with NEFTRAN-S, which is the model used by EPA for 40 CFR 191

Uranium Ore Bodies: Background

- Two ore bodies were derived based on literature review
- Reducing and oxidizing conditions were examined (20 and 500 ppb ²³⁸U, respectively)
- Retardation factors for reducing conditions were taken from the WISP report (1983)
- For oxidizing conditions, the retardation factor for uranium was reduced $_{\nu \times \Re}$

Uranium Ore Bodies: Background

- Dissolved ²³⁸U and daughter products were assumed to be in equilibrium at the ore body
- The model UCBNE-41 was used to determine steady-state concentrations 5,000 m downgradient from the ore body
- The hydrogeologic and geometric parameters were taken from the EPA study by Williams et al., 1980
- A 100,000 metric ton repository was considered (EPA)

Individual Dose from Drinking Water

Radio- nuclide	Concen- tration, Reducing (pCi / l)	Concen- tration, Oxidizing (pCi / l)	Dose Conversion Factor (rem / Ci)	Dose Reducing (rem / yr)	Dose Oxidizing (rem / yr)
²³⁸ U	6.7 x 10°	1.7 x 10 ²	8.57 x 10 ⁵	4.0 x 10 ⁻³	0.10
²³⁴ U	6.9 x 10°	1.7 x 10 ²	9.86 x 10 ⁵	4.8 x 10 ⁻³	0.12
²³⁰ Th	5.7 x 10 ⁻²	1.8 x 10 ⁻¹	6.29 x 10 ⁵	2.5 x 10 ⁻⁵	7.9 x 10 ⁻⁵
²²⁶ Ra	5.6 x 10 ⁻¹	1.8 x 10°	1.38 x 10 ⁶	5.4 x 10 ⁻⁴	1.7 x 10 ⁻³
²¹⁰ Pb	5.7 x 10°	1.8 x 10 ¹	7.43 x 10 ⁶	3.0 x 10 ⁻²	9.4 x 10 ⁻²
Total				3.9 x 10 ⁻²	0.32

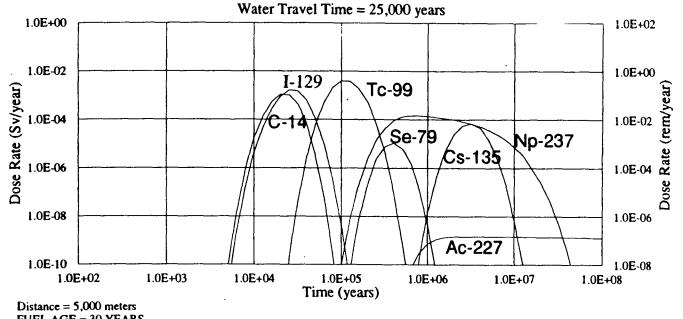
Integrated Health Effects for Repository Equivalent Ore Body

- The integrated health effects over 10,000 years were calculated assuming that
 - All water flowing through the ore body was used for household use (150 gal/day/person)
 - There are 500 health effects for 10⁶ person rem (EPA)
- The number of health effects over 10,000 years is 2,000 and 17,000 for reducing and oxidizing conditions, respectively
- The basis for 40 CFR 191 over 10,000 years is 1,000 health effects

Integrated Releases for Repository Equivalent Ore Body (Oxidizing Conditions)

- Over 10,000 years the integrated release of uranium, ²³⁰Th, and ²²⁶Ra is 74.0, 0.04, and 0.4 Ci, respectively (per 1,000 MTHM)
- The release limit (40 CFR 191) for uranium, ²³⁰Th, and ²²⁶Ra is 100, 10, and 100 Ci, respectively (per 1,000 MTHM)

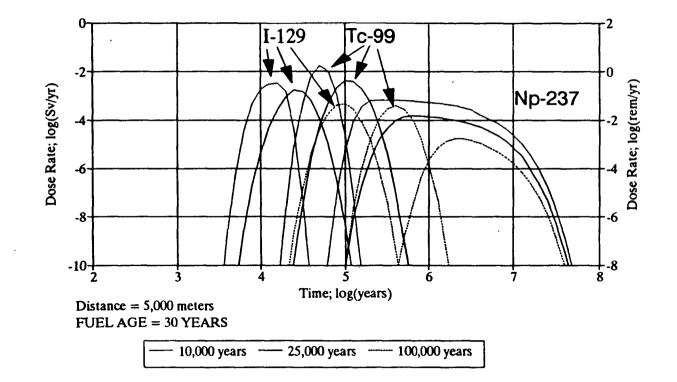
Uranium Ore Body Summary


- The dose from drinking water down-gradient of a uranium ore body ranges from 39 to 320 mrem/yr
- The number of health effects over 10,000 years ranges from 2,000 to 17,000
- The integrated release of uranium and daughters over 10,000 years from the ore body (oxidizing) is lower than the EPA standard
- Thus, an average uranium ore body would meet the EPA release standard but not the health effect basis for the Standard

Repository Sensitivity Analyses Individual Dose Assumptions

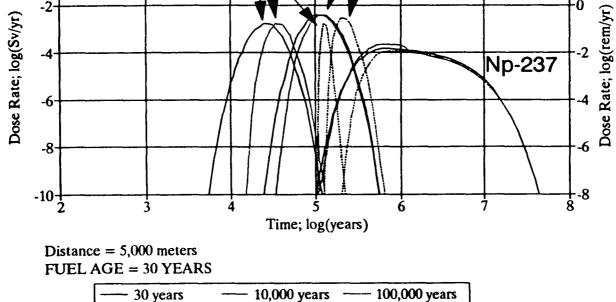
- Ground-water travel time = 25,000 yrs
- Infiltration = 1.0 mm/yr = periodation flux
- Porosity = 0.1
- Aquifer thickness = 2400 m
- Dilution factor = 1.15 x 10⁻⁴
- Dispersion coefficient = 50 m²/yr
- ¹²⁹I, ¹⁴C, ⁹⁹Tc, ⁷⁹Se, ¹³⁵Cs are alterationcontrolled
- Other radionuclides are solubility-limited

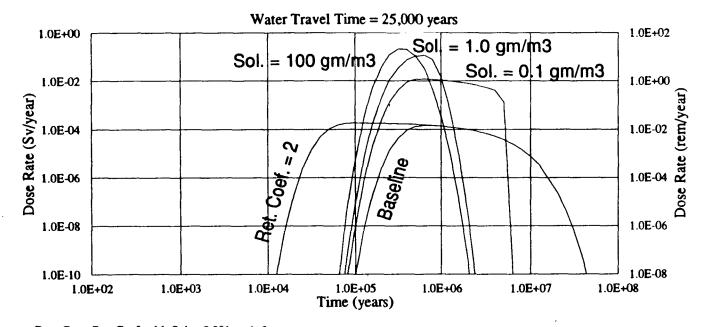
Individual Dose Rate (UCBNE-41)


(Baseline Case)

FUEL AGE = 30 YEARS

Sensitivity to Percolation Flux

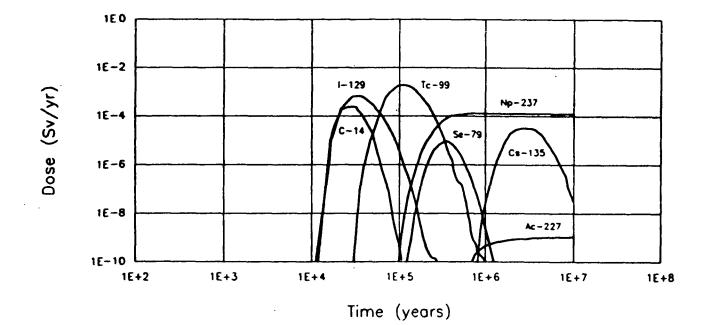

(0.21, 1.0, and 4.0 mm/yr = 100,000, 25,000, and 10,000 yr ground-water travel time, respectively)


Sensitivity to Waste Package Lifetime (0, 10,000, and 100,000 yrs)

Water Travel Time = 25,000 years

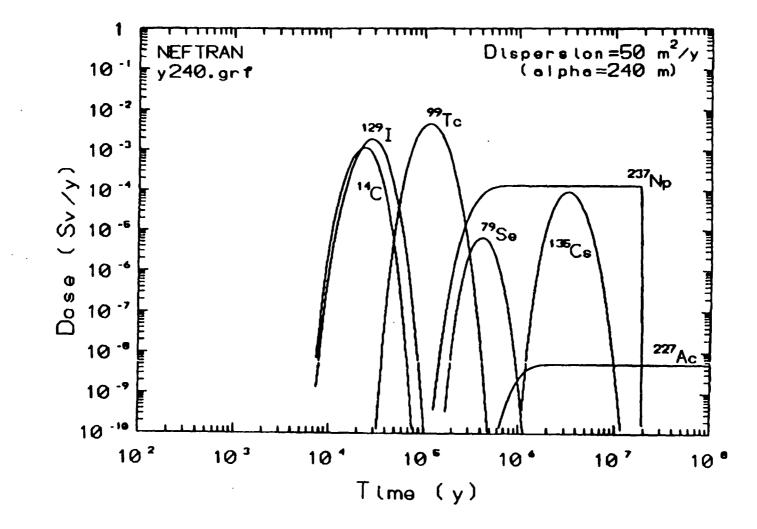
a

Sensitivity to ²³⁷Np Solubility and Retardation


Base Case: Ret. Coef = 16; Sol. = 0.001 gm/m3 Distance = 5.000 meters FUEL AGE = 30 YEARS

Summary of Sensitivity Analyses

- If new Yucca Mountain standard is for all time, waste package life has little effect on long-term dose
- Long-term doses are sensitive to flux through the package and ²³⁷Np solubility (e. g., source term)
- Long-term dose could be reduced by controlled release of the source term


Individual Dose Rate (RIP)

(Baseline Case)

Individual Dose Rate (NEFTRAN-S)

(Baseline Case)

ENVSTDJD.PPT.125.NWTRB/1-12-93 16

Hydraulic conductivity	1.0 x 10 ⁻⁴ cm / sec		
Gradient	0.01		
Porosity	0.15		
Pore velocity	2.1 m / yr		
Thickness	30 m		
Width	3700 m		
Length	50 m (in the direction of flow)		
U ₃ O ₈ concentration	0.09 %		
Host rock density	2.0 gm / cm ³		
Reserve	10,000 metric tons U ₃ O ₈		
Repository conversion factor	62		

.

.

.

.

•

Geohydrologic and Size Characteristics of the Derived Uranium Ore Body

-