A RISK PERSPECTIVE OF NUCLEAR WASTE REPOSITORY PERFORMANCE ASSESSMENT

by Dr. B. John Garrick

Presented to U.S. NUCLEAR WASTE TECHNICAL REVIEW BOARD Arlington, Virginia January 12, 1994

WHAT ARE THE QUESTIONS TO BE ANSWERED BY PERFORMANCE ASSESSMENT?

- WHAT WILL THE PERFORMANCE BE IF THE REPOSITORY IS UNDISTURBED?
- WHAT WILL THE PERFORMANCE BE IN REALITY, CONSIDERING THE LIKELIHOOD OF EVENTS THAT CAN DISTURB THE REPOSITORY?

PERFORMANCE ASSESSMENT OF WASTE REPOSITORY

- DEFINE PERFORMANCE ASSESSMENT RECOGNIZING BOTH THE UNDISTURBED AND THE VARIOUS POSSIBLE DISTURBED SCENARIOS
- DEVELOP A SYSTEMATIC SET OF OUTPUT FORMATS THAT TOGETHER EXPRESS REPOSITORY PERFORMANCE QUANTITATIVELY IN TERMS OF THE UNCERTAINTIES PRESENT
- IMMEDIATELY SUMMARIZE AND CLARIFY ANSWERS TO THE FOLLOWING QUESTIONS:
 - WHAT RADIONUCLIDES DOMINATE THE REPOSITORY RISK OVER THE TIME PERIODS OF INTEREST?
 - -- WHAT ARE THE UNCERTAINTIES IN THE INDIVIDUAL RADIONUCLIDE CALCULATIONS?
 - WHAT ALTERNATIVES EXIST FOR REDUCING THE DOSE BURDEN FROM THESE RADIONUCLIDES?
 - WHAT IS THE EFFECTIVENESS RANKING OF THE ALTERNATIVES?
 - WHAT ARE THE COSTS OF THE MOST ATTRACTIVE ALTERNATIVES?
- PROCEED WITH THE FULL-SCOPE PERFORMANCE ASSESSMENT FOR THE MOST ATTRACTIVE ALTERNATIVES

QUANTITATIVE DEFINITION OF PERFORMANCE ASSESSMENT

ADOPT THE FOLLOWING "SET OF TRIPLETS" DEFINITION OF REPOSITORY PERFORMANCE:

$$\mathsf{P}_{\mathsf{R}} \equiv \{ < \mathsf{s}_{\mathsf{i}}, \, \ell_{\mathsf{i}}, \, \mathsf{X}_{\mathsf{i}} > \}$$

WHERE

s_i = THE Ith SCENARIO

 ℓ_i = THE LIKELIHOOD OF THE SCENARIO

X_i = THE "DAMAGE VECTOR" CONSEQUENT TO THE Ith SCENARIO

INTERPRETATIONS OF PERFORMANCE ASSESSMENT NOTATION

- WITHIN THE LANGUAGE OF THE TRIPLET DEFINITION OF PERFORMANCE ASSESSMENT, LET
 - $s_0 = THE "UNDISTURBED" SCENARIO$
 - $s_i = THE POSSIBLE "DISTURBED" SCENARIOS$
- A DAMAGE VECTOR, X, CONSISTS OF A SET OF "COMPONENTS" THAT ARE CALLED "DAMAGE INDICES"; EXAMPLES OF THESE ARE
 - $x_1(t) =$ THE DOSE RATE (REM PER YEAR) TO AN INDIVIDUAL AT THE WORST LOCATION DURING YEAR t
 - $x_2(t) = THE CUMULATIVE INDIVIDUAL DOSE TO TIME t$
 - $x_{3}(t) = THE TOTAL DOSE TO THE HUMAN POPULATION IN YEAR t$
 - $x_4(t) = THE TOTAL HEALTH EFFECTS IN YEAR t$

etc.

FORM OF THE RESULTS

٠

SEABROOK STATION RISK RESULTS

PLG

INDIVIDUAL DOSE RATE (UCBNE-41) (Baseline Case)

R. W. Andrews Intera, Inc.

MODELING STAGES FOR QUANTITATIVE PERFORMANCE ASSESSMENT

