

Management & Operating Contractor

SIGNIFICANCE OF RADIONUCLIDE TRANSPORT PROCESSES TO PERFORMANCE ASSESSMENT: The Affect of Time and Alternate Thermal Management Strategies

PRESENTER:

Dr. Robert W. Andrews

PRESENTER'S TITLE AND ORGANIZATION:

Performance Assessment Manager CRWMS M&O/Intera Vienna, Virginia

PRESENTER'S TELEPHONE NUMBER:

(703) 204-8849 DENVER, COLORADO JULY 12, 1994

B&W Fuel Company Duke Engineering & Services, Inc. Fluor Daniel, Inc. INTERA Inc.

JK Research Associates, Inc. E. R. Johnson Associates, Inc. Logicon RDA. Morrison Knudsen Corporation TRW Environmental Safety Systems Inc. Winston & Strawn Woodward-Clyde Federal Services

Outline

- Relevant radionuclide transport domains and processes at Yucca Mountain
- Relative significance of radionuclide transport processes over different time periods and alternate measures of performance
- Possible effects of increased temperatures on radionuclide transport processes
- Relative significance of thermal management strategy on radionuclide transport processes

Management & Operating Contractor

Relevant Radionuclide Transport Domains and Processes

Relative Significance of Radionuclide Transport Processes from RIP TSPA-1993

- Function of:
 - time period considered
 - performance measure considered
 - » integrated cumulative release
 - » peak dose or concentration
- Depends on fundamental assumptions used in analyses, e.g.:
 - definition of waste package "failure"
 - water contact mode or percent of waste form surface exposed and wetted
 - fracture-matrix interaction
 - "minimum" Kd strategy

Relative Significance of Radionuclide Transport Processes Over Different Time Periods: Cumulative Release

	<u>10,000 years</u>		<u>100.000 years</u>	<u>1,000,000 years</u>
	<u>Gaseous</u>	Aqueous		
Dominant Radionuclides	C-14	Тс-99	C-14 Tc-99	C-14 Tc-99 Np-237
Key Transport Processes	WP "failure" SF dissolution	WP "failure" SF dissolution UZ aqueous flux UZ dispersion Matrix imbibition/ diffusion	WP "failure" SF dissolution EBS diffusion	SF dissolution Np solubility
Less Significant Processes	Gas transport		UZ aqueous flux	EBS diffusion UZ aqueous flux Np retardation
Insignificant Processes	UZ aqueous flux EBS diffusion		UZ dispersion	UZ dispersion Matrix imbibition/ diffusion
Civilian Radio Management	oactive Waste System		July 12	2 6
Management & O Contractor	perating			

Relative Significance of Radionuclide Transport Processes Over Different Time Periods: Peak Individual Dose

	<u>10.000 years</u>	<u>100.000 years</u>	<u>1.000.0</u>	<u>00 years</u>
Dominant		Tc-99	Tc-99	
Radionuclides	Insignificant (µ rem/yr)	l-129	l-129	
			Np-237	
Key Transport	WP "failure"	SF dissolution	SF disso	lution
Processes	SF dissolution	EBS diffusion	Np solub	oility
	EBS diffusion	UZ aqueous flux		
	• <u>*</u> .	Np retardation		
Less Significant	UZ aqueous flux		EBS diffu	usion
Processes	UZ dispersion		UZ aqueo	ous flux
	Matrix imbibition/ diffusion		Np retarc	ation
Insignificant	"Minimum" Kd	WP "failure"	WP "failu	ıre"
Processes		UZ dispersion	UZ dispe	rsion
		Matrix imbibition/	Matrix im	hbibition/
		diffusion	diffusion	
Civilian Radioactive Management System	Waste		July 12	7
				-

Management & Operating Contractor

Possible Effects of Increased Temperatures on Radionuclide Transport Processes

- Modifications in source term
 - delays initiation of aqueous corrosion
 - » function of humidity/temperature
 - » above ca. 300 C increase oxidation rate of mild steel
 - once aqueous corrosion is initiated (ca. 95 C), increased temperature:
 - » increases corrosion rate (factor 2 to 3)
 - » increases dissolution rate (factor 2 to 3)
 - » increases/decreases nuclide solubility (factor 2 to 5)
 - » increases ¹⁴CO₂ release

Management & Operating

Contractor

Possible Effects of Increased Temperatures on Radionuclide Transport Processes

- Modifications in transport through waste package/EBS
 - decreases average advective flux towards/through repository (?heterogeneity effects)
 - decreases water saturation and diffusive transport through capillary barrier
- Modifications in gas transport in geosphere
 - increases gas phase advective flux
 - increases gaseous component of carbon (i.e., CO_2 versus HCO_3)
- Modifications in aqueous transport in geosphere
 - initially, drive moisture (liquid and vapor) away from repository
 - with time, moisture (liquid and vapor) return to repository
 - possibility of refluxed water causing local saturated conditions and therefore potential for fracture flow
 - enhance sorptive capacity
 - modify liquid saturation and effective transport porosity

Thermo-Hydrologic Perturbations Included in RIP TSPA-1993

- Delay initiation of aqueous corrosion processes
- Modify aqueous corrosion rates for mild steel and Alloy 825
- Modify spent fuel and glass alteration rates
- Modify radionuclide solubilities
- Modify water content and diffusion coefficient in EBS
- Modify gas-phase velocities and ¹⁴CO₂ retardation and travel times
- Did not include modified aqueous geosphere flux

Civilian Radioactive Waste

Consequences of Thermo-Hydrologic Perturbations on RIP TSPA-1993 Results

- Higher temperatures delay corrosion initiation by several thousand years (depending on location)
- If waste packages are contacted by moisture and temperatures are below boiling but at higher end of temperature regime (ca. 95 C), corrosion rates are about 2-3 times higher and "failure" times are shorter
- If waste packages have "failed" at these temperatures,
 - dissolution rate is higher and waste package releases are higher for dissolution-limited nuclides
 - solubility limits are higher or lower and waste package releases are higher, lower or unchanged depending on the controlling radionuclide
- EBS diffusion not significantly reduced from ambient due to assumed rock-backfill hydrologic equilibrium

	<u>10,000 years</u>	<u>100.000 years</u>	<u>1.000.000 years</u>
Key Thermal Effects	Initiation of aqueous corrosion Oxidation rate	EBS water content (diffusion) UZ aqueous flux	
	EBS water content (diffusion)		
Less Significant Thermal Effects	SF dissolution rate UZ aqueous flux	Corrosion rate SF dissolution rate	
Insignificant Thermal Effects	Rn solubility	Initiation of aqueous corrosion Rn solubility	All

Civilian Radioactive Waste Management System

Conclusions

 Results from Performance Assessment help identify relative significance of radionuclide transport processes

Relative significance depends on:

- time period of concern
- performance measure of concern
- fundamental assumptions (conceptual and parameter) used in analyses
- Relative significance of transport processes
 is affected by thermal management strategy

· - -