SELENITE TRANSPORT IN UNSATURATED TUFF FROM YUCCA MOUNTAIN

James L. Conca WSU Tri-Cities 100 Sprout Road Richland, WA Inés R. Triay LANL Box 1663 Los Alamos, NM 4

OUTLINE

- Determination of Transport Parameters Using UFA
- UFA Validation Experiments
- Tuff Hydraulic Conductivity as a Function of Water Content
- Fracture Flow in Tuff
- Batch Sorption Studies and UFA Retardation Tests
- Summary

UNSATURATED FLOW APARATUS (UFA)

- Combines ultracentrifugation with precision fluid flow through rotating seals
- Attains hydraulic steady-state in hours instead of months to years at low water contents
- Accelaration is a whole body force analogous to gravity so there are no physical changes in sample as occurs with pressure methods - no fracturing, no density changes, no collapsing of internal structure, no grain rearrangement
- -20° to 150°C; 10 to 10,000 g; 400 to 0.001 ml/hr
- Multicomponent and multiphase flow possible with whole body force

The Primary Transport Parameters K - Hydraulic Conductivity (water permeability) $q = K \cdot \nabla \psi$

water flux = conductivity x pressure gradient

D - Diffusion Coefficient (static diffusion of single ions) $\mathbf{J} = \mathbf{D} \bullet \nabla \psi$

ion flux = diffusion coefficient x concentration gradient

 R_{f} - Retardation Factor (Chemical sorption and exchanges) $R_{f} = V_{gw} \div V_{c}$

۳ نو: نو:

UFA Hy-Sed 10.0 Rotor With New Mechanical Seal Design

After the water content is fixed in the sample and the material is at hydraulic steady-state, transport parameters can be determined from a variety of associated methods.

- Hydraulic conductivity can be determined from the driving force and flux.
- The electrical conductivity can be measured for determination of diffusion coefficients using the Nernst-Einstein equation.
- The effluent can be monitored/collected/analyzed for chemical changes, retardation effects, and determination of partitioning.

- □ UFA[™] measurements made over 3-days
- △ Traditional column experiments made over 1-year
- Average of field lysimeter measurements made over 13-years
- Mualem estimation derived from curve-fitted water-retention data made over 6-weeks

Characteristic Curves for the BWTF Soil Obtained Using Four Different Methods

Unsaturated Hydraulic Conductivities for Various Tuffs.

Resalts of Se Sorption onto zeolitic tuff (from G tunnel) in J-13

Particle size of wet-sieved tuff: 75 - 500 μm

Initial Se Concentration, ppm	Pretreatment Period, Days	Sorption Period, Days	pH after Sorption	Kd (ml/g)
1.1	6.9	0.04	8.4	-0.2
1.1	6.9	0.04	8.4	0.3
1.1	6.8	13.9	8.5	0.0
1.1	6.8	13.9		0.2
0.5	6.8	13.9	8.6	4
0.5	6.8	13.9		3
0.4	6.8	13.9	8.3	20
0.4	6.8	13.9		10
0.02	6.8	13.9	8.3	40
0.02	6.8	13.9		30

Batch Sorption Experimental Procedure

Pre-treatment Step

- 1g of wet-sieved tuff equilibrated with 20 ml of J-13 groundwater
- Phases separated by centrifugation

Sorption Step

- Pre-treated tuff equilibrated with 20 ml of Se solution in J-13
- Phases separated by centrifugation
- Amount of Se in liquid phase determined by ICP-MS
- Amount of Se in solid phase calculated by difference

Controls

 Containers without tuff material utilized to monitor Se precipitation and/or sorption onto walls

<u>Table 1.</u> J13 WellWater Chemistry* Spiked with Selenite for Retardation Experiments

1

Na	44.3 ppm		
К	4.0		
Mg	1.81		
Ca	12.1		
Si	28.7		
Se (as SeO ₂)	1.40		
Sr	0.036		
В	0.141		
рН	7.8		
F	2.2		
Cl	7.5		
SO ₄	19.0		
NO ₃	2.9		
NO ₂	14.0		
HCO ₃	119		

*IC and ICP emmission by Karl Pool at PNL

THE RETARDATION FACTOR

 $R_f = V_{groundwater}/V_{contaminant} = 1 + \rho K_d/n$

 R_f = retardation factor

V = velocity

n = porosity

 ρ = bulk density

 K_d = contaminant distribution coefficient

Which porosity should be used for n?

total (θ_s) volumetric water content (θ) effective (mobile vs. dead-end pores)

- The UFA[™] can effectively uncouple the matric potential from the Darcy driving force.
- In the UFATM, in situations where dψ/dr << ρω²r, the centrifugal force is the dominant Darcy driving force, radially-symmetric and 1-dimensional.
- However, the matric potential, while no longer important as a Darcy driving force, still acts in 3-dimensions and still is important in redistributing water and determining fluid flow paths.

Therefore, observed capillary phenomena are the same in the UFA[™] as in the field, e.g., fractures desaturate in a stepwise manner with decreasing aperture size.

Care must be taken when investigating synthetic materials that have ideal, smooth-walled, planar fractures radially symmetric to the axis of rotation, situations not encountered in natural systems.

Paintbrush Tuff $\rho = 2.41 \text{ g/cm}^3$

SUMMARY

- Available information suggests that batch sorption data can be used to predict transport under unsaturated conditions
- UFA is being utilized to further assess the validity of batch sorption data under unsaturated conditions
 - Se and U in J13 well water at ppb to ppm
 - Solution Strain Stra

Solico Hills, borehole G4 - 1503.9', 1510', 1529'

 UFA will be used to study unsaturated soluble and colloid species transport through fractured tuff

UFA is conservative with respect to colloids