Nuclear Waste Technical Review Board Engineered Barrier System Panel Meeting

The Hanford Site Tank Waste Remediation System's (TWRS) Waste Disposal Program

Steve Schaus High-Level Waste Program Office Tank Waste Remediation System Westinghouse Hanford Company (509) 372-1149

> Richland, Washington June 15, 1994

Wastes Requiring Disposal

- Single-shell tank waste
- Double-shell tank waste
- Cesium and strontium capsules

TWRS Disposal Program

١

5

Schaus Rev. Date 5/26/94 79304041.98d

.

TWRS Tri-Party Agreement Disposal-Related Milestones

3

 Characterization 	
 Complete Tank Characterization 	09/1999
 New Double-Shell Tanks 	
 Install Six New Tanks 	12/1998
Low-Level Waste	
 Pretreatment (Cesium Removal) Startup 	12/2004
 Vitrification Plant Startup 	06/2005
High-Level Waste	
 Pretreatment (Caustic Sludge Washing) Startup 	06/2008
 Vitrification Startup 	12/2009
Tank Waste Treatment	
 Complete Treatment of Tank Waste 	12/2028

BTF020094.32a 4

Pretreatment

- Caustic sludge washing primary means to minimize high-level waste volume
- Technology development of sludge dissolution and advanced radionuclide removal processes will continue as contingency
- Organic destruction process development will continue
- Pretreatment facilities operational
 - Low-level waste: 2004
 - High-level waste: 2008

High-Level Waste Immobilization

- Vitrified waste form in canisters
- Vitrified waste stored onsite until shipped to geologic repository for disposal
- High-level waste canister design optimized to reduce cost; may be as large as multipurpose canister (MPC) per discussions with RW/YMSCO
- Vitrification facility
 - Capacity: ~15 metric tons of waste glass per day
 - Start construction: 2002
 - Hot operation: 2009
 - Complete vitrification: 2028

Standard Design Basis Waste Form and Canister

- 2 ft dia x 10 ft long stainless canister (0.6 m³)
- Glass monolith
- Borosilicate glass
- Thermal output 1500 watts (maximum) per canister

Projected Characteristics of Hanford Site's High-Level Waste Product

- Range of HLW glass volume:
 - 10,000 28,000 m³
- Range of number of canisters (0.6 m³):
 - 16,700 46,700
- Total kW (thermal): ~930 (includes Cs/Sr and is indexed to 2021)
- Total eMTHM: ~2,600

Waste Form and Canister Options Under Consideration at Hanford

- Larger canisters/casks
 - Elongated wide mouth (West Valley) canister,
 2 ft dia x 15 ft (1.4 m³)
 - Large canister or cask (~10 m³)
- Non-monolithic glass, e.g., glass cullet, marbles
- Non-borosilicate glasses
 - Aluminosilicates
 - Others
- Cesium/strontium capsules
 - Overpack in canisters
 - Blend with high-level waste feed to vitrification plant

Technical Rationale for Options Considered

- Larger canister/cask
 - Fewer units to handle and transport
 - Takes advantage of repository packaging and shipping cask concepts for spent nuclear fuel
- Non-monolithic glass (glass cullet likely to be unacceptable to repository as waste form)
 - Easier to accommodate recycle of out-of-specification product
 - Facilitates use of large diameter canisters
- Non-borosilicate glasses
 - Potentially higher waste loadings per unit volume resulting in fewer canisters
- Cesium and strontium capsules
 - Overpack requires fewer processing steps
 - Blending yields fewer canisters

Cost Incentives for Options Considered

- Larger canister/cask
 - RW's cost model shows that larger canister options reduce disposal fee
- Non-monolithic glass
 - Reduced cost if recycling necessary
 - May be necessary if 10 m³ canister is used
- Non-borosilicate glasses
 - Reduced operating, storage, transportation, and disposal costs
- Overpack of cesium and strontium capsules
 - Less capital investment in facility to process cesium and strontium capsules
 - Lower operating costs
- Blending of cesium and strontium capsules
 - Potentially reduces number of canisters requiring repository disposal

Major EM/RW Program Interface Actions

- Based on recently signed MOA between EM and RW, continue dialogue on waste form and canister options
- Establish points-of-contact between RW/YMSCO and EM/RL
- Provide technical and economic evaluations of options under consideration
- Agree on process for formal transmittal of requests and responses between RL and YMSCO