March 9, 1994 San Francisco, CA **Bruce Crowe** Los Alamos National Laboratory **Probabilistic Volcanic Risk Assessment** 



# Conditional Probability Model Magmatic Disruption

# $Pr_{dr} = Pr(E3 \text{ given } E2, E1)Pr(E2 \text{ given } E1)Pr(E1)$

where

- E1: recurrence rate of volcanic events
- E2: probability a future event intersects a specified area
- E3: release of radionuclides to the accessible environment
- E1: volcanic centers, volcanic clusters, intrusions, polycyclic episodes, cluster episodes
- E2: repository, controlled area, waste isolation system (Yucca Mountain region)
- E3: direct releases (eruptions), coupled releases













# Volcanism Studies Data Paradox

1. Limited number of Volcanic Centers in the Yucca Mountain Region

7 Quaternary volcanic centers 3 Time-space clusters

12 Pliocene volcanic centers 4-5 Time-space clusters

# 2. Fundamental Assumption

# Volcanic record is too limited for robust calculations statistical significance goodness of fit

## 3. Risk assessment

Volcanic record of the Yucca Mountain region forward projection for probability estimates mid-point estimates Analog volcanic fields bounds on rates of volcanic events Multiple Alternative Models recurrence models structural and spatial models distribution models

4. Multiple Models are Possible cannot be proven or disproven with record

### effect on probability distribution

# **Volcanic Event**

**Probability Model** 

## 1. Range of definitions one of the reasons for differences in probability estimates

Cluster model: spatial and time related clusters of centers Center model: new volcanic center Event model: individual vents or fissures in a center

# 2. Polycyclic Volcanism episodes of volcanic activity at an *existing* volcanic center new concept: confusion in probability applications

Polycyclic events have been included in center or cluster models

- 3. Polycyclic Volcanism emphasis of future probabilistic studies
- 4. Consistent Application of Defined Models



# Volcanism Studies RISK SIMULATION

1. Simulation Modeling is used to test significance, sensitivity

ensure: all alternative models are included/evaluated occurrence probability risk

# NOT UNDERESTIMATED

BUT . . . . . . . . . .

ALTERNATIVE MODELS MUST BE PLAUSIBLE PHYSICALLY

2. New Perspective: Probability Estimates Previous Estimations: *probability bounds* Review Organizations *worse or worst case emphasis* 

3. Revised Estimates

Regulatory bounds Analog bounds Mid-point estimates: geologic record

unbiased probability distributions

4. DOE will assess distributions

**Regulatory perspective** 

# **Recurrence Models**

**Probability Estimates** 

1. Time-Series Data

Data too limited to be significant repose intervals

2. Homogeneous and Nonhomogeneous Poisson Models

Centers, Clusters

3. Time-Volume Models

Magma Output Rate mostly non-significant regression calculations



(Las Vegas, Nevada: Home of the World's Most Predictable Volcano)







EVENT

Repose (Ma)



.

· ·

| Interval            | Model             | Interval (yrs) | Minimum    | Maximum   | Most           |
|---------------------|-------------------|----------------|------------|-----------|----------------|
| - ·                 |                   |                |            | 1         | Likely         |
|                     |                   |                | events     | events yr | events yr-     |
| Quaternary          |                   | 2 00E+06       | <u>y</u> , |           |                |
|                     | Poisson Events    |                | 3          | 8         | 6              |
|                     | Poisson Rates     |                | 1.5E-06    | 4.0E-06   | 3.0E-06        |
|                     | Stress-Dike       |                | 3          | 8         | 5              |
|                     | Stress-Dike Rates |                | 1.5E-06    | 4.0E-06   | 2.5E-06        |
| Volcanic Cycle*     |                   | 4.80E+06       |            |           |                |
|                     | Poisson Events    |                | 8          | 19        | 12             |
|                     | Poisson Rates     |                | 1.7E-06    | 4.0E-06   | 2.5E-06        |
|                     | Stress-Dike       |                | 8          | 10        | 10             |
|                     | Stress-Dike Rates |                | 1.7E-06    | 2.1E-06   | 2.1E-06        |
| Quaternary          |                   | 1.60E+06       |            |           |                |
|                     | Poisson Events    |                | 3          | 8         | 6              |
|                     | Poisson Rates     |                | 1.9E-06    | 5.0E-06   | 3.7E-06        |
|                     | Stress-Dike       |                | · 3        | 6         | 5              |
|                     | Stress-Dike Rates |                | 1.9E-06    | 3.7E-06   | 3.1E-06        |
| Quaternary          |                   | 1.00E+06       |            |           |                |
| Accelerated*        |                   |                |            |           |                |
|                     | Poisson Events    |                | 3          | 8         | 7              |
|                     | Poisson Rates     |                | 3.0E-06    | 8.0E-06   | 6.0E-06        |
|                     | Stress-Dike       |                | 3          | 6         | 5              |
|                     | Stress-Dike Rate  |                | 3.0E-06    | 6.0E-06   | <u>5.0E-06</u> |
| Summary Statistics  |                   | Mean           | 2.0E-06    | 4.6E-06   | 3.5E-06        |
| (all Models)        |                   | Median         | 1.8E-06    | 4.0E-06   | 3.1E-06        |
|                     |                   | Geomean        | 1.9E-06    | 4.3E-06   | 3.3E-06        |
|                     |                   | Std            | 0.6E-06    | 1.7E-06   | 1.3E-06        |
|                     |                   | Deviation      |            |           |                |
| Summary Statistics  |                   | Mean           | 2.3E-06    | 5.0E-06   | 3.9E-06        |
| (Preferred Models)* | ,                 | Median         | 2.3E-06    | 5.0E-06   | 3.8E-06        |
|                     |                   | Geomean        | 2.3E-06    | 4.5E-06   | 3.6E-06        |
|                     |                   | Std            | 0.75E-06   | 2.53E-06  | 1.8E-06        |
| 1                   |                   | Deviation      |            |           |                |

# Table 7.5. Table of Homogeneous Poisson Models for Volcanic Events (E1) in the YMR.

\* Preferred models are models where the event counts span an interval that corresponds to cycles of volcanic activity (4.8 Ma to present; and 1.0 Ma to present.

| Interval                | Model                                 | Interval  | Minimum                 | Maximum                 | Most Likely             |
|-------------------------|---------------------------------------|-----------|-------------------------|-------------------------|-------------------------|
|                         |                                       | (yrs)     | events yr <sup>-1</sup> | events yr <sup>-1</sup> | events yr <sup>-1</sup> |
| Quaternary              | · · · · · · · · · · · · · · · · · · · | 2.00E+06  |                         |                         |                         |
| *                       | Events                                |           | 3                       | 8                       | 6                       |
|                         | Beta                                  |           | 3.10                    | 2.10                    | 2.30                    |
|                         | Weibull Rate                          |           | 4.6E-06                 | 8.4E-06                 | 6.9 <b>E-0</b> 6        |
|                         | Stress Dike                           |           | 3                       | 8                       | 5                       |
|                         | Beta                                  |           | 3.1                     | 2.10                    | 2.10                    |
|                         | Weibull Rate                          |           | 4.6E-06                 | 8.4E-06                 | 5.2E-06                 |
| Volcanic Cycle*         |                                       | 4.80E+06  |                         |                         |                         |
|                         | Events                                |           | 8                       | 19                      | 12                      |
|                         | Beta                                  |           | 0.84                    | 0.72                    | 1.00                    |
|                         | Weibull Rate                          |           | 1.4E-06                 | 2.9E-06                 | 2.5E-06                 |
|                         | Stress Dike                           |           | 8                       | 10                      | 10                      |
|                         | Beta                                  |           | 0.84                    | 0.9                     | 0.9                     |
|                         | Weibull Rate                          |           | 1.4E-06                 | 1.9E-06                 | 1.9E-06                 |
| Quaternary Rate         |                                       | 1.60E+06  |                         |                         |                         |
|                         | Events                                |           | 3                       | 8                       | 6                       |
|                         | Beta                                  |           | 1.7                     | 1.4                     | 1.7                     |
|                         | Weibull Rate                          |           | 3.2E-06                 | 7.0E-06                 | 6.4E-06                 |
|                         | Stress Dike                           |           | 3                       | 6                       | 5                       |
|                         | Beta                                  |           | 1.7                     | 1.7                     | 1.8                     |
|                         | Weibull Rate                          |           | 3.2E-06                 | 6.4E-06                 | 5.6E-06                 |
| Quaternary Accelerated* |                                       | 1.00E+06  |                         |                         |                         |
|                         | Events                                |           | 3                       | 8                       | 6                       |
|                         | Beta                                  |           | 0.94                    | 0.60                    | 0.70                    |
|                         | Weibull Rate                          |           | 2.8E-06                 | 4.8E-06                 | 4.2E-06                 |
|                         | Stress Dike                           |           | 3                       | 6                       | 5                       |
|                         | Beta                                  |           | 0.94                    | 0.70                    | 0.60                    |
|                         | Weibull Rate                          |           | 2.8E-06                 | 4.2E-06                 | 3.0E-06                 |
| Summary Statistics      |                                       | Mean      | 3.0E-06                 | 5.5E-06                 | 4.6E-06                 |
| (all models)            |                                       | Median    | 3.0E-06                 | 5.6E-06                 | 4.7E-06                 |
|                         |                                       | Geomean   | 2.8E-06                 | 4.9E-06                 | 4.0E-06                 |
|                         |                                       | Std       | 1.2E-06                 | 2.4E-06                 | 1.9E-06                 |
|                         |                                       | Deviation |                         |                         |                         |
| Summary Statistics      |                                       | Mean      | 2.1E-06                 | 3.4E-06                 | 2.9E-06                 |
| (Preferred Modesis)*    |                                       | Median    | 2.1E-06                 | 3.5E-06                 | 2.7E-06                 |
| -                       |                                       | Geomean   | 2.0E-06                 | 3.2E-06                 | 2.8E-06                 |
|                         |                                       | Std       | 8.08E-07                | 1.30E-06                | 9.76E-07                |
|                         |                                       | Deviation |                         |                         |                         |

Table 7.6 Nonhomogeneous Recurrence Models (E1) for the YMR

\* Preferred models are models with event counts spanning intervals that correspond to cycles of volcanic activity (4.8 Ma to present; 1.0 Ma to present)





**EVENT MODELS** VOLUME CUMVOL MOR\* AGE  $(m^3 yr^{-1})$ (Ma) Event: Case I Thirsty Mesa 4.8 3.0E+09 3.0E+09 305 GR\*\* (mean) GR (geomean) GR (median) 3.0E+08 268 Amargosa Valley 3.8 3.3E+09 2.5E+06 1.2E+06 9.7E+05 6.8E+08 CF3.7 3.7 4.0E+09 2.8E+06 1.4E+06 1.1E+06 ER\*\*\* (mean) Buckboard 2.9 9.2E+08 4.9E+09 ER (geomean) GR (median) CF1.0 1.0 2.3E+08 5.1E+09 4.0E-07 8.2E-07 1.0E-06 .32 5.9E+07 5.2E+09 Sleeping Butte 3.5E-07 7.2E-07 9.0E-07 5.3E+09 .12 1.4E+08 Lathrop Wells Mean 7.6E+08 Median 3.0E+08 3.8E+08 Std Deviation Geomean 1.0E+09 Event: Case II GR (mean) GR (geomean) GR (median) CF1.0 2.3E+08 2.3E+08 1.0 305 4.6E+05 4.0E+05 4.5E+05 2.9E+08 268 **Sleeping Butte** .32 5.9E+07 5.2E+05 4.5E+05 5.1E+05 Lathrop Wells .12 1.4E+08 ER (mean) 4.3E+08 ER (geomean) ER (median) 1.4E+08 Mean Median 1.4E+08 2.2E-06 2.5E-06 2.2E-06 Geomean 1.2E+08 Std Deviation 8.5E+07 1.9E-06 2.2E-06 1.9E-06 Event: Case III GR (mean) GR (geomean) GR (median) CF-North 1.0 1.7E+08 1.7E+08 305 2.7E+05 2.1E+05 1.9E+05 CF-South 1.0 6.0E+07 2.3E+08 268 3.1E+05 2.3E+05 2.1E+05 Hidden .32 3.5E+07 2.6E+08 ER (mean) ER (geomean) ER (median) Black Peak .32 2.4E+07 2.9E+08 3.7E-06 4.9E-06 5.3E-06 Lathrop .12 1.4E+08 4.3E+08 3.2E-06 4.2E-06 4.6E-06 Mean Median 6.0E+07 8.6E+07 6.5E+07 Geomean 6.5E+07 Std Deviation \*MOR : Magma Output Preferred Models Generation Rate Event Rate Rate \*\*GR= Generation Rate Preferred mean 2.9E+05 3.4E-06 \*\*\*ER = Event Rate Preferred median 2.0E+05 5.0E-06 Preferred geomean 2.2E+05 4.5E-06

:

Table 7.9 Age, Cumulation Volume, Magma Ouput Rates, Generation Rates, and Event Rates for Pliocene and Quaternary Volcanic Centers of the YMR.

3/1



| Model                   | Min       | Most Likely | Max     | Min(all) | Max(all) |         |         | ······································ |         |
|-------------------------|-----------|-------------|---------|----------|----------|---------|---------|----------------------------------------|---------|
| Homogeneous: All        | 2.1E-06   | 3.6E+00     | 4.6E-06 | 1.5E-06  | 8.0E-06  |         |         |                                        |         |
| Homogeneous: Pref       | 2.3E-06   | 4.1E-06     | 5.0E-06 | 1.7E-06  | 8.0E-06  |         |         |                                        |         |
| Nonhomogeneous: All     | 3.0E-06   | 4.4E-06     | 5.5E-06 | 1.4E-06  | 8.4E-06  |         |         |                                        |         |
| Nonhomogeneous: Pref    | 2.1E-06   | 2.9E-06     | 3.4E-06 | 1.4E-06  | 4.8E-06  |         |         | 1                                      | l       |
| Repose                  |           |             | 5.3E-06 |          |          |         |         |                                        |         |
| Volume-Predict          | 1.0E-06   | 3.2E-06     | 5.3E-06 |          |          | ;       |         |                                        |         |
| Distribution Boundaries | quartiles | 10%/1%      | 10%/5%  | 10%/10%  | Normal   |         |         |                                        | ļ       |
|                         |           | limits      | limits  | limits   | (1 σ)    |         |         |                                        |         |
| Risk Simulations        | Sim1      | Sim2        | Sim3    | Sim4     | Sim5     | Mean    | Median  | Geomean                                | Std Dev |
| Homogeneous: All        | 4.8E-06   | 4.4E-06     | 4.9E-06 | 5.4E-06  | 3.6E-06  | 4.6E-06 | 4.8E-06 | 4.6E-06                                | 6.8E-07 |
| Homogeneous: Pref       | 4.8E-06   | 4.1E-06     | 5.0E-06 | 5.5E-06  | 4.1E-06  | 4.8E-06 | 4.8E-06 | 4.8E-06                                | 5.2E-07 |
| Nonhomogeneous: All     | 4.8E-06   | 4.6E-06     | 5.1E-06 | 5.6E-06  | 4.5E-06  | 4.9E-06 | 4.8E-06 | 4.9E-06                                | 4.4E-07 |
| Nonhomogeneous: Pref    | 4.8E-06   | 4.3E-06     | 4.8E-06 | 5.4E-06  | 2.9E-06  | 4.4E-06 | 4.8E-06 | 4.3E-06                                | 9.3E-07 |
| Repose                  |           | 4.7E-06     | 5.2E-06 | 5.7E-06  |          | 5.2E-06 | 5.2E-06 | 5.2E-06                                | 4.7E-07 |
| Volume                  | 2.8E-06   | 4.4E-06     | 4.9E-06 | 5.4E-06  | 3.4E-06  | 4.5E-06 | 4.6E-06 | 4.5E-06                                | 1.1E-06 |
| Minimum                 |           | 4.0E-06     | 4.6E-06 | 5.2E-06  | 2.2E-06  | 4.0E-06 | 4.3E-06 | 3.8E-06                                | 1.3E-06 |
| Maximum                 |           | 5.3E-06     | 5.7E-06 | 6.1E-06  | 4.5E-06  | 5.4E-06 | 5.5E-06 | 5.5E-06                                | 6.7E-07 |
| Ho (1992)               | 7.0E-06   |             |         |          |          |         |         |                                        |         |
| Mean                    | 4.4E-06   | 4.5E-06     | 5.0E-06 | 5.5E-06  | 3.6E-06  |         |         |                                        |         |
| Median                  | 4.8E-06   | 4.5E-06     | 5.0E-06 | 5.5E-06  | 3.6E-06  |         |         |                                        |         |
| Geomean                 | 4.3E-06   | 4.5E-06     | 5.0E-06 | 5.5E-06  | 3.5E-06  |         |         |                                        |         |
| Std Deviation           | 8.8E-07   | 3.8E-07     | 3.1E-07 | 2.5E-07  | 8.4E-07  |         |         |                                        |         |

Table 7.10 Simulation Matrix, expected values and matrix statistics for E1, the recurrence rate.

Simulations 1 - 4: Trigen distribution. Simulation 1: min- max from Tables 7.5 and 7.6. Simulations 2-4: min-max from Fig. 7.11 Simulations 5: Normal distribution. Median and standard deviation from Tables 7.5 and 7.6.

÷

.

.

3/1/2

.

# **Simulated Results: E1**



**Expected Values:** 

Homogeneous 5.0E<sup>6</sup> Nonhomogeneous 4.8E<sup>6</sup> Repose 5.2E<sup>6</sup> Volume 4.9E<sup>6</sup> Minimum 4.6E<sup>6</sup> Maximum 5.7E<sup>6</sup> Ho(1992) 7.0E<sup>6</sup>

CRWNWTB2.P2.CDR.123/2-28-94

# **Risk Simulation: Homogeneous Poisson**



Top ---- 90 per %

Center - - - 50 Per %

Bottom - - - - 10 per %

# **Risk Simulation: Nonhomogeneous Poisson**



- Top ---- 90 per %
- Center - Mean
- Bottom - 10 per %







| Spatial Model          | Time (Ma)  | Area (km2) | Model 1 | Model 2         | Model 3 | Comments                    |
|------------------------|------------|------------|---------|-----------------|---------|-----------------------------|
| Quat Centers (circle)  | 1.00       | 2400       | 2.5E-03 | 3.7E-04         | 6.2E-04 | Crowe et al. 1982           |
| Quat Centers (ellipse) | 1.00       | 4400       | 1.4E-03 | 2.0E-04         | 3.4E-04 | Crowe et al. 1982           |
| Quat + BB (circle)     | 3.75       | 2500       | 2.4E-03 | 3.6E-04         | 6.0E-04 | Crowe et al. 1982           |
| Quat + BB (ellipse)    | 3.75       | 2000       | 3.0E-03 | 4.5E-04         | 7.5E-04 | Crowe et al. 1982           |
| Cluster 1*             | 3.75       | 400        | 1.5E-02 | 2.2E-03         | 3.7E-03 | Crater Flat Volcanic Field* |
| Cluster 2              | 3.85       |            |         |                 |         | Intersection not possible   |
| Cluster 3              | 4.80       |            |         |                 |         | Intersection not possible   |
| Cluster 4              | 4.80       |            |         |                 |         | Intersection not possible   |
| Cluster 5              | 2.90       |            |         |                 |         | Intersection not possible   |
| Cluster 1a*            | 3.75       | 750        | 8.0E-03 | 1.2E-03         | 2.0E-03 | Crater Flat + Amargosa*     |
| Cluster 2a             | 4.80       |            |         |                 |         | Intersection not possible   |
| Cluster 3a             | 2.90       |            |         |                 |         | Intersection not possible   |
| CFVZ                   | 4.80       | 1450       | 4.1E-03 | 6.2E-04         | 1.0E-03 | Crater Flat Volcanic zone   |
| NESZ                   | 3.85       | 1200       | 5.0E-03 | 7.5E-04         | 1.2E-03 | Northeast Structural Zone   |
| East-west zone         | 4.80       |            |         |                 |         | Intersection not possible   |
| Cluster 1              | 1.00       |            |         |                 |         | Intersection not possible   |
| Cluster 2              | 1.00       | 110        |         |                 |         | Lathrop Wells cluster       |
| Cluster 3              | 1.00       |            |         |                 |         | Intersection not possible   |
| Cluster 1a*            | 1.00       | 400        | 1.E-02  | 2.2E-03         | 3.7E-03 | Quaternary CF + Lathrop*    |
| Cluster 2a             | 1.00       |            |         |                 |         | Intersection not possible   |
| CFVZ                   | 1.00       | 1310       | 4.6E-03 | 6.9E-04         | 1.1E-03 | Crater Flat Volcanic Zone   |
| NHPP Cluster           | 3.75       |            | 2.0E-03 | 3.0E-04         | 5.0E-04 | Connor and Hill             |
| NHPP Cluster           | 3.75       |            | 2.4E-03 | 3.6E-04         | 6.0E-04 | Connor and Hill             |
| NHPP Cluster           | 1.00       |            | 2.7E-03 | 4.0E-04         | 6.7E-04 | Connor and Hill             |
| NHPP Cluster           | 1.00       |            | 3.1E-03 | 4.6E-04         | 7.7E-04 | Connor and Hill             |
|                        | Summary    | Mean       | 5.1E-03 | 7.6E-04         | 7.6E-04 |                             |
|                        | Statistics | Median     | 3.1E-03 | <b>4</b> .6E-04 | 7.6E-04 |                             |
|                        |            | Std Dev    | 4.5E-03 | 6.8E-03         | 1.1E-03 |                             |
|                        |            | Skew       | 1.8     | 1.8             | 1.8     | 1                           |
|                        | (unlikely  | Mean       | 3.0E-03 | 4.5E-04         | 7.5E-04 |                             |
|                        | cases      | Median     | 2.6E-03 | 3.9E-04         | 6.5E-04 |                             |
|                        | excluded)  | Std Dev    | 1.2E-03 | 1.8E-04         | 2.9E-04 | 1                           |
|                        |            | Skew       | 0.6     | 0.6             | 0.6     |                             |

\* Spatial models noted by the asterisk are included in the first group of summary statistics but repository intersection is judged to be unlikely from geometrical constraints on the propagation of dikes from the cluster areas, and the long 1/2 length of projected dike dimensions required to achieve intersection.



VLCEV8.123.CDR/9-17-93

Table 17.14. Alternative Structural Models for the Distribution of Pliocene and Quaternary Volcanic Centers in the YMR.

| Structural Model                 | Evidence for Model                     | Evidence Against Model           | Subsets or Alternative Models  |  |
|----------------------------------|----------------------------------------|----------------------------------|--------------------------------|--|
| Model 1: Crater Flat             | Supportive Evidence: northwest-        | Negative Evidence: small         | Alternative Submodels: The     |  |
| Volcanic Zone (Quaternary).      | trending linear distribution of        | number of volcanic centers,      | Crater Flat centers and the    |  |
| This structural model is based   | volcanic vents, coincidence of the     | distance of gap between Crater   | Sleeping Butte centers may be  |  |
| on the definition of the Crater  | zone and vent alignment with the       | Flat and Sleeping Butte centers, | located in separate structural |  |
| Flat volcanic zone of Crowe      | orientation of the surface of          | secondary northeast alignment of | zones.                         |  |
| and Perry (1989). The            | maximum eruption volumes,              | vent clusters.                   |                                |  |
| dimensions of the zone are       | predominance of northwest              |                                  |                                |  |
| defined from the distribution of | structural trends in the Walker Lane   |                                  |                                |  |
| Quaternary volcanic centers.     | structural zone, possible evidence of  | · ·                              |                                |  |
|                                  | strike-slip offset of structural       |                                  |                                |  |
|                                  | features in Paleozoic rocks, strike-   |                                  |                                |  |
|                                  | slip pull-apart origin of Crater Flat. |                                  |                                |  |
| Model 2: Crater Flat             | Supportive Evidence: Same as           | Negative Evidence: Same as       | Alternative Submodels: Same    |  |
| Volcanic Zone (YPB). Same        | Model 1.                               | model 1, basalt of Buckboard     | as Model 1, the aeromagnetic   |  |
| as model 1 but the dimensions    |                                        | Mesa is not included in the      | anomalies of the Amargosa      |  |
| of the zone are defined by the   |                                        | structural zone.                 | Valley may also be in separate |  |
| distribution of the Pliocene and |                                        |                                  | structural zones.              |  |
| Quaternary volcanic centers of   |                                        |                                  |                                |  |
| the Younger Post-caldera         |                                        |                                  |                                |  |
| basalt.                          |                                        |                                  |                                |  |
| Model 3: Yucca Mountain          | Supportive Evidence: Model is          | Negative Evidence: No            |                                |  |
| Region. This is a non-           | based on the distribution of Pliocene  | structural basis for model.      |                                |  |
| structurally based zone defined  | and Quaternary volcanic centers in     |                                  |                                |  |
| by the distribution of Pliocene  | the YMR.                               |                                  |                                |  |
| and Quaternary basalt centers    |                                        |                                  |                                |  |
| of the YMR. It is similar to but |                                        |                                  |                                |  |
| slightly larger than the Area of |                                        |                                  |                                |  |
| Most Recent Volcanism of         |                                        |                                  |                                |  |
| Smith et al. (1990).             |                                        |                                  |                                |  |

.

### Table 7.14 (cont)

| Model 4: Crater Flat             | Supportive Evidence: most of the      | Negative Evidence: Other             | Alternative Submodels: Each         |
|----------------------------------|---------------------------------------|--------------------------------------|-------------------------------------|
| Volcanic field: This zone        | Pliocene and Quaternary volcanic      | basalt centers occur outside the     | group of volcanic rocks may         |
| assumes that the major control   | events have occurred in the Crater    | Crater Flat basin, the linear north- | record a separate volcanic field.   |
| of the occurrence of basalt      | Flat basin, Crater Flat is the        | northwest alignment of basalt        | These include the Crater Flat,      |
| centers is the local Crater Flat | centroid of the distribution of units | centers is oblique to the north-     | Amargosa, Black Mountain and        |
| volcanic field, which is the     | of the YPB, the Crater Flat basin     | south elongation of the Crater       | Buckboard fields.                   |
| primary site of Pliocene and     | may be a remaining area of active     | Flat basin.                          |                                     |
| Quaternary basaltic volcanism.   | tectonism and maximum extension,      |                                      |                                     |
|                                  | Crater Flat basin was a site of       |                                      |                                     |
|                                  | Miocene basaltic volcanism.           |                                      |                                     |
| Model 5: Strike-Slip             | Supportive Evidence: linear           | Negative Evidence: Strike-slip       | Alternative Submodels: The          |
| Structural Control: Model A.     | northwest alignment of basaltic       | fault is not expressed at the        | Thirsty Mesa/Sleeping Butte         |
| This structural model is based   | volcanic centers, proposed offset of  | surface, there is not always a       | centers and the aeromagnetic        |
| on the inference that the        | structural features of Paleozoic      | strong correlation between strike-   | anomalies of the Amargosa           |
| alignment of basalt centers      | rocks, Walker Lane structural         | slips faults and sites of            | Valley may be located on            |
| parallels a concealed            | setting, clockwise rotation of field  | Quaternary volcanism in the          | separate strike-slip faults and be  |
| northwest-trending right-slip    | magnetization directions of the Tiva  | basin-range.                         | unrelated to the Crater Flat basalt |
| fault of the Walker Lane         | Canyon Member, coincidence of the     |                                      | units.                              |
| structural system. The model     | basalt centers with zone of maximum   |                                      |                                     |
| has been described by            | rotation of the magnetization         |                                      |                                     |
| Schweickert (1989).              | directions, similar structural bounds |                                      |                                     |
|                                  | may be defined for Miocene basaltic   |                                      |                                     |
| ]                                | volcanism (Older basalt of Crater     |                                      |                                     |
|                                  | Flat, aeromagnetic anomaly of VH-     |                                      |                                     |
| 1                                | 2).                                   |                                      |                                     |

•

.

.

### Table 7.14 (cont)

| Model 6: Strike Slip<br>Structural Control: Model B.<br>This structural model is based<br>on the inference that the south-<br>southeast edge of the Crater<br>Flat basin is bounded by a<br>north-northwest trending, right<br>slip fault. The Pliocene and<br>Quaternary basalt centers are<br>inferred to have ascended along<br>this fault zone and diverted to<br>the northeast (maximum<br>compressive stress direction).                                    | Supportive Evidence: steep gravity<br>gradient paralleling proposed<br>strike-slip fault, presence of north-<br>northwest trending right-slip fault in<br>the arcuate ridge at the south end of<br>Crater Flat, clockwise rotation of<br>field magnetization directions of the<br>Tiva Canyon member, structural<br>models of Crater Flat basin. | <b>Negative Evidence</b> : Bare<br>Mountain fault shows<br>predominately dip-slip offset,<br>basalt centers do not occur on<br>the Bare Mountain fault, no<br>correlation between volume of<br>basalt centers and proximity to<br>proposed bounding strike-slip<br>fault. | Alternative Submodels: Same<br>as model 5.                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Model 7: Stress-field Dike:<br>Quaternary centers. This<br>structural model assumes basalt<br>magma ascended along a<br>concealed structure defined by<br>the northwest orientation of<br>vents of the CFVZ. The feeder<br>dike or dikes following this<br>structure and diverted at<br>shallow depths to follow the<br>maximum compressive stress<br>direction. The direction of dike<br>propagation is either to the<br>north-northeast or south-<br>southwest. | Supportive Evidence: coincidence<br>of the zone of maximum erupted<br>volume of magma with the CFVZ,<br>symmetrical distribution of vents<br>about northwest-trending vent<br>locations, cluster length of the<br>Quaternary basalt of Crater Flat<br>exceeds maximum likely dike length.                                                        | Negative Evidence: multiple<br>dikes are required only for the<br>Quaternary basalt of Crater Flat,<br>no recognized correlation<br>between center chemistry and<br>proposed dike systems, does not<br>explain the distribution of all<br>basalt centers.                 | <b>Alternative Submodels</b> : This<br>model is a subset of the strike-<br>slip models. |

۰.

•



•

.

### Table 7.14 (cont)

| Model 8: Stress-field Dike:<br>Pliocene and Quaternary<br>centers. This model is<br>identical to model 7. The<br>dimensions of the structural<br>zone are defined by the<br>distribution of Pliocene and<br>Quaternary volcanic centers. | Supportive Evidence: Same as<br>model 8, aeromagnetic anomalies of<br>Amargosa Valley may be analogous<br>to the Quaternary basalt centers of<br>Crater Flat, and formed basalt<br>centers only at the ends of the dikes.                       | Negative Evidence: Does not<br>explain the occurrence of the<br>basalt of Buckboard Mesa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alternative Submodels: May<br>form three separate structural<br>systems including the<br>aeromagnetic anomalies of<br>Amargosa Valley, the Crater Flat<br>volcanic field, and the Thirsty<br>Mesa/Sleeping Butte centers. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model 9: Chain model.<br>Basalt centers follow northeast-<br>trending chains and the chains<br>form zones of higher risk for<br>future volcanic events (Smith et<br>al. 1990).                                                           | supportive Eviaence: northeasi-<br>trends of clusters of<br>contemporaneous volcanic centers,<br>parallelism of northeast trends of<br>clusters to bedrock faults of Yucca<br>Mountain, analog comparison to<br>other basaltic volcanic fields. | Negative Evidence: risk Zones<br>are unsuccessful as predicators<br>of future events, basalt of the<br>YPB do not follow existing faults,<br>dimensions of chains from analog<br>volcanic fields exceed maximum<br>cluster lengths of centers in the<br>YMR, structural trends different<br>for alignments of the Thirsty<br>Mesa and basalt of southeast<br>Crater Flat (north trending),<br>longer chains occur only in<br>alluvial basins, Lathrop Wells and<br>Buckboard Mesa centers do not<br>form chains, northeast trends are<br>secondary to northwest trends. |                                                                                                                                                                                                                           |

.

•

80

.

٠

#### Table 7.14 (cont)

.

.

| Model 10: Pull-Apart Basin:<br>The Crater Flat basin is a pull-<br>apart basin located at the<br>termination of northwest-<br>trending, strike-slip faults of<br>the Walker Lane structural<br>system. The basin is a tectonic<br>basin and the basalt centers<br>occur along extensional<br>structures of the basin (Fridrich<br>and Price 1992). | Supportive Evidence: discontinuous<br>northwest-trending faults of the<br>Crater Flat area, multiple basalt<br>cycles of the Crater Flat basin (10.5<br>Ma and Pliocene and Quaternary),<br>gravity data showing steep,<br>northwest-trending gradients,<br>clockwise rotation of field<br>magnetization directions of the Tiva<br>Canyon Member, Walker Lane<br>structural setting.          | <b>Negative Evidence</b> : the occurrence of basalt centers is not confined to the pull-apart basins, limited continuity of northwest-trending fault systems.                                                                                                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Model 11: Caldera Model.<br>The Crater Flat basin is a<br>structural depression formed by<br>multiple, coalesced caldera<br>collapses associated with<br>eruption of the Crater Flat tuff.<br>Basalt centers are inferred to<br>follow the ring-fracture system<br>of the caldera complex (Carr,<br>1990).                                         | Supportive Evidence: Crater Flat<br>basin is located on the south part of<br>the southwest Nevada volcanic field,<br>basalt centers are located commonly<br>along ring-fracture zones of caldera<br>complexes, basalt of Buckboard<br>mesa is located on the ring-fracture<br>of the Timber Mountain caldera,<br>dike of Solatario Canyon and<br>extensions may follow ring-fracture<br>zone. | <b>Negative Evidence:</b> caldera<br>origin of the basin is<br>controversial, basalt centers<br>occur beyond the confines of the<br>Crater Flat basin, basalt centers<br>occur across the caldera floor<br>and resurgent dome and are not<br>confined to the ring-fracture<br>zone. |  |

.

.

.

81

Table 7.14 (cont)

| Model 12: Northeast<br>Structural Zone: The YMR is<br>located in a diffuse northeast<br>trending, tectonic-volcanic rift<br>zone. Sites of basaltic<br>volcanism are more common in<br>the zone than outside the zone;<br>composite model proposed by<br>Carr (1984; 1990; Kawich-<br>Greenwater Rift zone, and<br>Wright 1989; Amargosa Desert | Supportive Evidence: northeast-<br>trending zone of closely spaced,<br>normal faulting, orientation of<br>caldera centers in the southwest<br>Nevada volcanic field, northeast<br>trending structural trough that is<br>delineated partly by gravity data,<br>concentration of basaltic volcanic<br>centers in the northeast-trending<br>structural zone. | <b>Negative Evidence:</b> structural<br>zones may be a composite of<br>multiple different structures,<br>basalt centers are present both<br>in and outside the structural<br>zone, northwest linear alignment<br>of basalt centers occur within the<br>northeast-trending zone.                                                                                                                          | · · · · · · · · · · · · · · · · · · · |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Rift zone).<br>Model 13: Crater Flat and<br>Buckboard Mesa volcanic<br>zone: The basalt centers of<br>Crater Flat and the basalt of<br>Buckboard Mesa form a<br>northeast trending zone that<br>extends through the potential<br>Yucca Mountain site (proposed<br>by Smith et al. 1990 and<br>Naumann et al. 1992).                             | Supportive Evidence: local<br>northeast trends of basalt vents in<br>Crater Flat, existence of the basalt<br>centers of Crater Flat, and<br>Buckboard Mesa.                                                                                                                                                                                               | <b>Negative Evidence:</b> Distance of<br>separation between the Crater<br>Flat basalt centers and the basalt<br>of Buckboard Mesa, interruption<br>of the northeast-trends by<br>oblique structures of the Timber<br>Mountain-Oasis Valley caldera<br>complex, northwest-trending vent<br>alignments of the basalt of<br>Buckboard Mesa, no basalt<br>centers between Crater Flat and<br>Buckboard Mesa. |                                       |

.

•

•

| NumberIntervalrepository(km²)IntersectionIntersectionIntersectionIntersectionModel 1CFVZ1.00no11001310LowModel 2CFVZ3.85no13501450LowModel 3YMR/AMRV4.80yes21802180HighModel 4CFVF3.75no220400UnlikelyModel 4aCFVF with AV3.85no750750UnlikelyModel 5Strike Slip1.00no11001310Low                                                                                                                                                                                                                                                                                                               | 4.6E-03<br>4.1E-03<br>2.7E-03<br>1.5E-02<br>8.0E-03<br>4.6E-03<br>4.6E-03<br>4.6E-03 | 6.9E-04<br>6.2E-04<br>4.1E-04<br>2.2E-03<br>1.2E-03<br>6.9E-04<br>6.2E-04 | Front<br>1.2E-03<br>1.0E-03<br>6.9E-04<br>3.7E-03<br>2.0E-03<br>1.1E-03 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Model 1         CFVZ         1.00         no         1100         1310         Low           Model 2         CFVZ         3.85         no         1350         1450         Low           Model 3         YMR/AMRV         4.80         yes         2180         2180         High           Model 4         CFVF         3.75         no         220         400         Unlikely           Model 4a         CFVF with AV         3.85         no         750         750         Unlikely           Model 5         Strike Slip         1.00         no         1100         1310         Low | 4.6E-03<br>4.1E-03<br>2.7E-03<br>1.5E-02<br>8.0E-03<br>4.6E-03<br>4.1E-03<br>4.6E-03 | 6.9E-04<br>6.2E-04<br>4.1E-04<br>2.2E-03<br>1.2E-03<br>6.9E-04<br>6.2E-04 | 1.2E-03<br>1.0E-03<br>6.9E-04<br>3.7E-03<br>2.0E-03<br>1.1E-03          |
| Model 1         CFVZ         3.85         no         1350         1450         Low           Model 2         CFVZ         3.85         no         1350         1450         Low           Model 3         YMR/AMRV         4.80         yes         2180         2180         High           Model 4         CFVF         3.75         no         220         400         Unlikely           Model 4a         CFVF with AV         3.85         no         750         750         Unlikely           Model 5         Strike Slip         1.00         no         1100         1310         Low | 4.1E-03<br>2.7E-03<br>1.5E-02<br>8.0E-03<br>4.6E-03<br>4.1E-03<br>4.6E-03            | 6.2E-04<br>4.1E-04<br>2.2E-03<br>1.2E-03<br>6.9E-04<br>6.2E-04            | 1.0E-03<br>6.9E-04<br>3.7E-03<br>2.0E-03<br>1.1E-03                     |
| Model 3YMR/AMRV4.80yes21802180HighModel 4CFVF3.75no220400UnlikelyModel 4aCFVF with AV3.85no750750UnlikelyModel 5Strike Slip1.00no11001310Low                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7E-03<br>1.5E-02<br>8.0E-03<br>4.6E-03<br>4.1E-03<br>4.6E-03                       | 4.1E-04<br>2.2E-03<br>1.2E-03<br>6.9E-04<br>6.2E-04                       | 6.9E-04<br>3.7E-03<br>2.0E-03<br>1.1E-03                                |
| Model 4CFVF3.75no220400UnlikelyModel 4aCFVF with AV3.85no750750UnlikelyModel 5Strike Slip1.00no11001310Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5E-02<br>8.0E-03<br>4.6E-03<br>4.1E-03<br>4.6E-03                                  | 2.2E-03<br>1.2E-03<br>6.9E-04<br>6.2E-04                                  | 3.7E-03<br>2.0E-03<br>1.1E-03                                           |
| Model 4aCFVF with AV3.85no750750UnlikelyModel 5Strike Slip1.00no11001310Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0E-03<br>4.6E-03<br>4.1E-03<br>4.6E-03                                             | 1.2E-03<br>6.9E-04<br>6.2E-04                                             | 2.0E-03<br>1.1E-03                                                      |
| Model 5 Strike Slip 1.00 no 1100 1310 Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.6E-03<br>4.1E-03<br>4.6E-03                                                        | 6.9E-04<br>6.2E-04                                                        | 1.1E-03                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1E-03<br>4.6E-03                                                                   | 6.2E-04                                                                   |                                                                         |
| Model 6 Strike Slip 4.80 no 1350 1450 Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.6E-03                                                                              |                                                                           | 1.0E-03                                                                 |
| Model 7 Stress-Dike 1.00 no 1100 1310 Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      | 6.9E-04                                                                   | 1.1E-03                                                                 |
| Model 8 Stress-Dike 4.80 no 1350 1450 Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1E-03                                                                              | 6.2E-04                                                                   | 1.0E-03                                                                 |
| Model 9 Chain Model 3.75 no 390 450 Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7E-03                                                                              | 4.0E-04                                                                   | 6.7E-04                                                                 |
| Model 9a Chain Model 3.85 no 500 690 Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.8E-04                                                                              | 1.2E-04                                                                   | 2.0E-04                                                                 |
| Model 10 Pull-Apart 3.75 no 390 450 Unlikely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3E-02                                                                              | 2.0E-03                                                                   | 3.3E-03                                                                 |
| Model 10a Pull-Apart 3.85 no 500 690 Unlikely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.7E-03                                                                              | 1.3E-03                                                                   | 2.2E-03                                                                 |
| Model 11 Caldera 3.75 no 220 400 Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5E-02                                                                              | 2.2E-03                                                                   | 3.7E-03                                                                 |
| Model 12 Kawich Rift 3.75 ves 1700 1700 High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.5E-03                                                                              | 5.3E-04                                                                   | 8.8E-04                                                                 |
| Model 12a 12 with AV 3.85 yes 2250 2250 High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7E-03                                                                              | 4.0E-04                                                                   | 6.7E-04                                                                 |
| Model 13 NESZ 3.75 yes 1200 1200 High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0E-03                                                                              | 7.5E-04                                                                   | 1.2E-03                                                                 |
| Statistics (all models) Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.1E-03                                                                              | 9.1E-04                                                                   | 1.5E-03                                                                 |
| Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.6E-03                                                                              | 6.9E-04                                                                   | 1.1E-03                                                                 |
| Geomean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.8E-03                                                                              | 7.2E-04                                                                   | 1.2E-03                                                                 |
| StdDev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4E-03                                                                              | 6.6E-04                                                                   | 1.1E-03                                                                 |
| Statistics (Intersection Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5E-03                                                                              | 5.2E-04                                                                   | 8.7E-04                                                                 |
| models) Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.1E-03                                                                              | 4.7E-04                                                                   | 7.8E-04                                                                 |

#### Table 7.15. Estimations of E2 for Structural Models of the Yucca Mountain Region.

85

8.4E-04

2.7E-04

3.4E-03

1.1E-03

Geomean Std Dev

÷.

•

5.0E-04

1.6E-04



Y-Axis



UTHEAST

UTMNORTH



**Simulation Results: E2** 



**Expected Value** 

All Published 4.1E<sup>3</sup> Published (outliers) 3.8E<sup>3</sup> All Spatial 3.1E<sup>4</sup> Spatial (outliers) 2.8E<sup>3</sup> Structural 4.6E<sup>3</sup> NE Trend 3.1E<sup>3</sup>

CRWNWTB2.P4.CDR.123/2-28-94



- Top ---- 90 per %
- Center - Mean

Bottom - - - 10 per %

**Simulation Results: E2 Fixed** 



Pr(E<sub>2</sub> given E1)Pr(E1) Events yr<sup>-1</sup> x 10<sup>-8</sup>

CRWNWTB2.P5.CDR.123/2-28-94

# **Simulation Results: Intersection Models**



Structural 2.25 x  $10^{4}$ Spatial 1.5 x  $10^{4}$ Maximum 7.3 x  $10^{4}$ Maximum 2.4 x  $10^{4}$ (outliers)

CRWNWTB2.P3.CDR.123/2-28-94

Table 7.23. Probability of magmatic disruption of the repository where the recurrence rate (E1) is adjusted for individual spatial and structural models of E2.

÷

.

|                    |              |             | Pr(E2 given E1) | Pr(E1)  |                |
|--------------------|--------------|-------------|-----------------|---------|----------------|
| Spatial Models     | E2           | E1 Adjusted | Intersection    | Z Score | Range          |
| Cluster 1 (3.7)    | 1.5E-02      | 2.6E-06     | 4.01E-08        | 1.4     | 6.0E-09        |
| Cluster 1a (3.85)  | 8.0E-03      | 2.3E-06     | 1.9E-08         | 0.0     | 2.8E-09        |
| CFVZ (4.8)         | 4.1E-03      | 3.7E-06     | 1.5E-08         | -0.1    | 2.3E-09        |
| NESZ (3.85)        | 5.0E-03      | 3.6E-06     | 1.8E-08         | 0.0     | 2.7E-09        |
| Cluster 1a (1.0)   | 1.5E-02      | 5.0E-06     | 7.5E-08         | 3.6     | 1.1E-08        |
| CFVZ (1.0)         | 4.6E-03      | 6.0E-06     | 2.7E-08         | 0.6     | 4.1E-09        |
| Structural Models  |              |             |                 |         |                |
| CFVZ (1.0)         | 4.6E-03      | 6.0E-06     | 2.7E-08         | 0.6     | 4.1E-09        |
| CFVZ (4.8)         | 4.1E-03      | 2.5E-06     | 1.0E-08         | -0.5    | 1.5E-09        |
| YMR (4.8)          | 2.7E-03      | 2.5E-06     | 6.9E-09         | -0.7    | 1.0E-09        |
| CFV Field (3.75)   | 1.5E-02      | 1.6E-06     | 2.4E-08         | 0.4     | 3.6E-09        |
| CFV Field + AV     | 8.0E-03      | 2.3E-06     | 1.9E-08         | 0.0     | 2.8E-09        |
| Strike Slip (1.0)  | 4.6E-03      | 6.0E-06     | 2.7E-08         | 0.6     | 4.1E-09        |
| Strike Slip (4.8)  | 4.1E-03      | 2.3E-06     | 9.5E-09         | -0.5    | 1.4E-09        |
| Stress-Dike (1.0)  | 4.6E-03      | 2.7E-06     | 1.2E-08         | -0.4    | 1.8E-09        |
| Chain Model (3.7)  | 2.7E-03      | 1.6E-06     | 4.3E-09         | -0.9    | 6.4E-10        |
| Chain Model (3.85) | 7.8E-04      | 2.1E-06     | 1.6E-09         | -1.0    | 2.4E-10        |
| Pull-Apart (3.7)   | 1.3E-02      | 1.6E-06     | 2.1E-08         | 0.2     | 3.2E-09        |
| Pull-Apart (3.85)  | 8.7E-03      | 2.1E-06     | 1.8E-08         | 0.0     | 2.7E-09        |
| Caldera (3.75)     | 1.5E-02      | 1.6E-06     | 2.4E-08         | 0.4     | 3.6E-09        |
| Kawich Rift (3.7)  | 3.5E-03      | 1.6E-06     | 5.6E-09         | -0.8    | 8.5E-10        |
| Kawich Rift (3.85) | 2.7E-03      | 2.1E-06     | 5.5E-09         | -0.8    | 8.3E-10        |
| NESZ (3.7)         | 5.0E-03      | 1.9E-06     | 9.4E-09         | -0.6    | <u>1.4E-09</u> |
|                    | Summary M    | Nean        | 1.9E-08         |         | 2.9E-09        |
|                    | Statistics A | Nedian      | 1.8E-08         |         | 2.7E-09        |
|                    |              | Geomean     | 1.5E-08         |         | 2.2E-09        |
|                    | 5            | StDev       | 1.6E-08         |         | 2.1E-09        |
|                    | 5            | Skewness    | 2.2             |         | 2.2            |
|                    | ) A          | Ainimum     | 1.6E-09         |         | 2.4E-10        |
|                    | Λ            | Maximum     | 7.5E-08         | <u></u> | 1.1E-08        |

.

# What Have We Learned Probability Estimates

1. Recurrence Models: well constrained

insensitive to mid-point estimates boundary assumptions far more important

How much could they Change? undetected intrusions undetected centers

Factor of 2 or 3 to be significant

### 14 to 21 undetected centers or intrusions

2. Structural Models

small number of structural/spatial models are significant dike lengths structural models **Geophysics/field studies may be useful Pliocene or Quaternary dikes in exploration block** Northeast-trending models are not sensitive

Judgment required: suitability of high probability disruption ratios

3. Effects Studies are Needed

Controlled Area Yucca Mountain Region Repository (dependent on range interior models)

# Judgment required: suitability of models criterion on probability distribution curve

# Future Directions Probability/Volcanism Studies

1. Examination of Polycyclic Models/Probability Estimates

High E1, very low E2, probable very very low E3

"Standoff" distance being assessed for subsurface effects

2. Geophysical Studies

Magma bodies Test structural models Subsurface geometry: small volume basalt centers Undetected features (but is this significant?)

3. Evolutionary Patterns of Volcanic Fields

Test assumptions of probability models

4. Yearly Updates: Probability Estimates

Sensitivity to site characterization Simulation Framework Established: Revisions relative easy

5. Importance of Expert Judgment