
MEETING OF THE U.S. NUCLEAR WASTE TECHNICAL REVIEW BOARD'S PANEL ON STRUCTURAL GEOLOGY AND GEOENGINEERING

TOPICAL REPORT: METHODOLOGY TO ASSESS SEISMIC HAZARDS AT YUCCA MOUNTAIN

Richard C. Quittmeyer CRWMS M&O / WCFS March 8, 1994

.

ASSESSMENT METHODOLOGY OBJECTIVES

- Meet regulatory requirements
 - Describe and assess features that might affect GROA design and performance
 - Design structures, systems and components important to safety so that natural phenomena anticipated at the GROA will not interfere with necessary safety functions
 - Design GROA facilities to provide protection against radiation exposures and releases of radioactive material
 - Design GROA facilities to provide retrievability of waste during preclosure period
 - Adequately investigate and evaluate potentially adverse conditions

ASSESSMENT METHODOLOGY OBJECTIVES

- To meet these objectives the methodology should:
 - Meet the needs of seismic safety design and waste containment performance assessment
 - » Assess vibratory ground motion and fault displacement hazards
 - » Determine hazards at the surface and in the subsurface
 - » Be applicable for both the pre-closure and postclosure time frames
 - Facilitate regulatory review and decision-making

DESIGN CONTEXT

- The goal of seismic design is to ensure that society is not exposed to unacceptable risks related to the occurrence of earthquakes.
- Risk is a function of an event's frequency of occurrence and its consequences.
- Performance goal-based design process links consequences, frequency of occurrence, seismic design criteria, and the hazard level appropriate for design.

DESIGN CONTEXT

- Performance goal-based design process
 - Establish performance categories for structures, systems and components based on the adverse consequences of their failure
 - Establish performance goals (annual probabilities of failure that design should ensure are not exceeded) such that risk is constant across the performance categories
 - Establish design and acceptance evaluation criteria for each performance category.
 - » Criteria may result in risk reduction
 - » More conservative criteria result in greater risk reduction
 - For each performance category, hazard level (annual probability of exceedance) appropriate for design equals the performance goal times the risk reduction factor

METHODOLOGY

- A probabilistic methodology is adopted to:
 - Explicitly incorporate the frequency of earthquake occurrence
 - Explicitly incorporate variability of inputs to the hazard assessment
 - Provide the integrated hazard from all significant sources
 - Support design for waste isolation
- A probabilistic assessment is required to:
 - Support the assessment of the long-term performance of a repository with respect to waste containment
 - Support the performance goal-based seismic design process

METHODOLOGY

- Relies on established, generally accepted data collection and analyses
- Components
 - Seismic source identification and characterization
 - Assessment of frequency of occurrence and maximum magnitude
 - Evaluation of
 - » ground motion attenuation, or
 - » fault displacement
 - Integrate over input data and evaluations
 - Propagate uncertainties
 - Sensitivity analyses
- Based on experience

SEISMIC SOURCE EVALUATION

Seismic source characterization

- Spatial description of faults and volumetric source zones
- Potential for activity
- Dependencies

• Recurrence

- For fault sources: based on geologic and paleoseismic data related to recurrence intervals and slip rates
- For volumetric sources: based on geologic and seismic data
- Poissonian and characteristic descriptions will be tested with the available data and incorporated as appropriate
- Temporal clustering can be treated using the probabilistic approach

SEISMIC SOURCE EVALUATION

• Maximum magnitude

- For fault sources: determined from empirical relations between magnitude and rupture length, rupture area, and displacement, using the available data
- Will incorporate evaluations of fault segmentation if appropriate
- For volumetric sources: determined from tectonic analysis; the magnitudes of earthquakes with observed surface rupture provide an upper bound

GROUND MOTION ATTENUATION EVALUATION

- Empirical and numerical methods will be used
- Near-field effects will be evaluated for nearfield sources
- Site response evaluation
 - Local Geology
 - Topography
 - Depth of burial

LV.SC.RCQ.3/94-

FAULT DISPLACEMENT EVALUATION

- Methodology employs empirical relationships between displacement and magnitude
- Secondary faulting is incorporated
 - Amount and distribution
 - Empirical relationships based on available data from similar tectonic regimes
- New faulting can be incorporated into the probabilistic assessment

HAZARD ASSESSMENT

- Integrates over all inputs
- Results in curve showing annual probability that various levels of hazard (ground motion or fault displacement) will be exceeded
- Propagate uncertainty
 - Logic tree method
 - Monte Carlo method

• Carry out sensitivity analyses

- Sensitivity to input variability
- Disaggregation to identify strong contributors to hazard at various probability exceedance levels
- Comparison of calculated and observed seismicity

SUMMARY

- A probabilistic methodology:
 - Provides the results needed for performance goal-based design and for assessment of the long-term performance of a repository with respect to waste containment
 - Incorporates explicitly:
 - » Frequency of earthquake occurrence
 - » Variability in hazard assessment inputs
 - » Hazard contribution from all significant sources
 - Provides a basis for design and licensing decisions based on:
 - » established safety performance goals
 - » demonstrated compliance with waste containment performance goals
 - » extensive documentation of data and interpretations