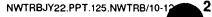
OFFICE	U.S. DEPARTMENT OF ENERGY OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT
NUCLEAF	R WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING
SUBJECT:	SETTING TESTING & ANALYSES PRIORITIES FOR TECHNICAL SITE SUITABILITY DETERMINATION AND LICENSING
PRESENTER:	DR. JEAN L. YOUNKER
PRESENTER'S TITLE AND ORGANIZATION:	MANAGER, REGULATORY AND TECHNICAL EVALUATION TRW ENVIRONMENTAL SAFETY SYSTEMS LAS VEGAS, NV
PRESENTER'S TELEPHONE NUMBER:	(702) 794-7650



Topics Proposed by Nuclear Waste Technical Review Board

- Waste isolation strategy for Yucca Mountain
- Role of thermal loading in the strategy
- Key technical issues associated with suitability and licensability
- Significant features/events/processes that could impact suitability of Yucca Mountain
- Information/analyses priorities for
 - Technical Site Suitability
 - License Application for Construction
 - License Application to Receive and Possess Waste
 - Alternate regulatory criteria

Outline of Presentation

- Waste isolation strategy
 - Site Characterization Plan strategy
 - Strategy refinements since the Site Characterization Plan
- Key elements of waste isolation strategy
 - Current understanding
 - Plans for reducing uncertainties
- Information/analyses priorities and major milestones

Top-Level Strategy 1988 Site Characterization Plan

(Section 8.0, pgs 4-9)

- The strategy places primary reliance on low flux conditions, slow water movement, and long radionuclide transport times in the unsaturated zone
- Low-probability, potentially disruptive processes and events that could have significant impacts on performance of the repository will be identified and characterized
- Preclosure repository designs will incorporate appropriate seismic design criteria

STATECG.BFR/1-28,29-88

Objectives for the Elements of the Repository System

(SCP Section 8.0, pgs. 4-9)

- Engineered-barrier system objective:
 - Limit release of radionuclides to the natural barrier system
- Natural barrier system objective:
 - Provide very long radionuclide travel time to the accessible environment
- Preclosure disposal system objective:
 - Construction of facility does not compromise the ability to meet other objectives, and
 - Provides safe operation

STATECG.BFR/1-28,29-88

Schematic of Top-Level Strategy

(SCP Section 8.0, pgs. 4-6)

POSTCLOSURE			PRECLOSURE	
ERS	COMPONENT	`J OBJECTIVES	COMPONENT	OBJECTIVES
BARRIE	UNSATURATED ROCK/AIR GAP	LIMIT THE WATER AVAILABLE TO CONTACT AND CORRODE CONTAINERS AND DISSOLVE WASTE	SURFACE AND UNDERGROUND FACILITY CONSTRUCTION	PROVIDES BENEFICIAL OR NO IMPACT ON POSTCLOSURE SYSTEM PERFORMANCE
RED	CONTAINER	SERVE AS PRINCIPAL CONTAINMENT BARRIER DURING EARLY RADIATION AND HEAT PEAK	SURFACE AND UNDERGROUND FACILITY OPERATION	SAFE OPERATION UNDER NORMAL AND ACCIDENT CONDITIONS
ENGINEE	WASTE FORM	LIMIT DISSOLUTION AND LEACHING OF RADIONUCLIDES DUE TO LIMITED WATER CONTACT		
NATURAL BARRIERS	<u>COMPONENT</u> UNSATURATED ROCK BELOW THE REPOSITO SATURATED ROCK BE THE UNSATURATED R	ORY TRANSPORT BY PROVIDING LONG RADIONUCLIDE TRAVEL TIMES		STATECG.BFR/1-28,29-88
Ż				

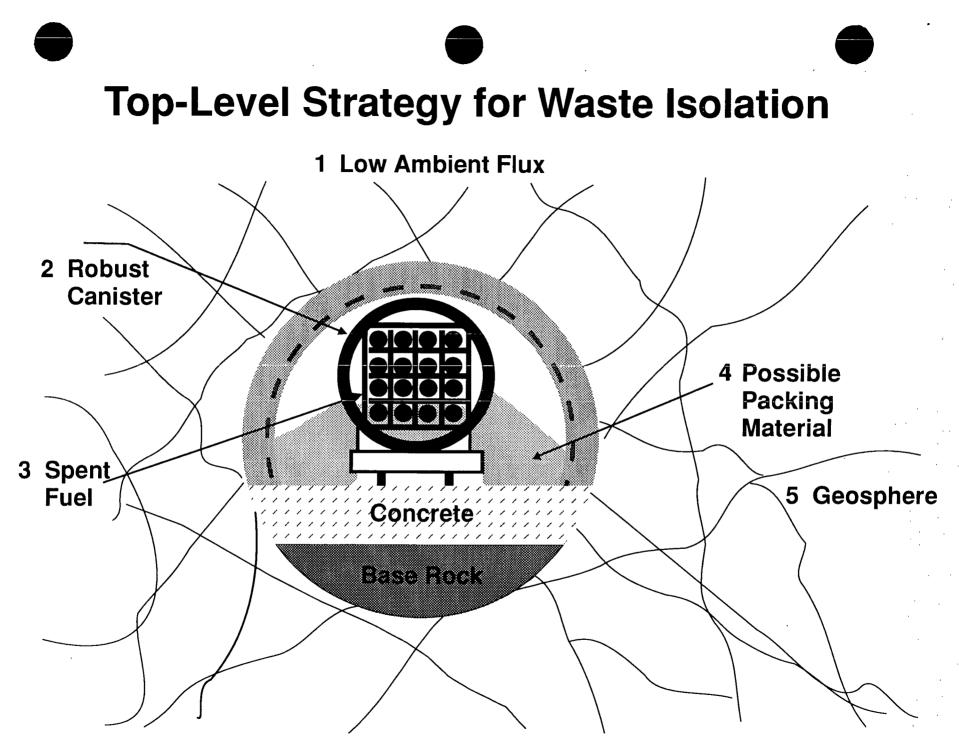
Strategy Refinements 1988 - 1994

- Increased recognition of fast flow paths
- Explicit focus on contribution that thermal loading could make to system performance
- Multipurpose canister as potential waste form
- In-drift emplacement mode for multipurpose canister changes backfill/airgap options
- Greater role for saturated zone under dose-based standard
- Consideration of extended retrieval period

Thermal Strategy Perspective

- Maintain flexibility in design to allow modifications that could improve system performance
 - Identify key environmental and design parameters
 - Define envelope for key parameters
- Technical Site Suitability Strategy
 - Establish reference thermal loading based on current design concepts
 - Evaluate sensitivity to range of thermal loadings under consideration
- Licensing Strategy
 - Determine range of conditions over which designs work
 - Use performance confirmation to show we are within those conditions
 - Modify strategy as needed to improve performance

Top-Level Waste Isolation Strategy Adapted to Current Program


- Establish bounds on water contacting waste packages as ultimate limit on non-gaseous releases
- Develop long-life waste package (>1000 yr) as key to early repository safety
- Establish bounds on waste form dissolution rates and transport from repository for +1000 yr safety
- Establish expected dilution in aquifer to predict doses

- Current understanding
- Key uncertainties
- Plans for reducing uncertainties

Components/Mechanisms of Current Strategy

- Dry environment around engineered barriers provided by unsaturated zone
- Robust engineered materials for those packages contacted by water
- Slow dissolution of waste matrix and low solubility of radionuclides
- Slow release of radionuclides through the engineered barrier
 - Slow transport of radionuclides through the geosphere set in the set of the

WSTISOJY.CDR.125/10-11-94 11

- Spatial distribution of infiltration rates based on matrix properties and shallow neutron boreholes
- Saturation profiles in unsaturated zone
- Old age of matrix groundwater
- Unsaturated zone hydrologic modeling
- Laboratory matrix suction and imbibition experiments

- Extent of seeps and perched water expected in ESF
- Interaction of geosphere with engineered backfill/airgap
- Young age of some deep unsaturated zone groundwater
- Effect of thermal load on redistributing flux
- Focusing mechanisms for percolation flux (e.g., capillary barrier, perched zone)

Continued infiltration monitoring

- Observations in ESF
 - Hydrochemistry/isotopic analyses
 - Matrix saturation
 - Behavior of seeps
 - Compare with pre-ESF predictions
- Long-duration thermohydrologic testing in ESF
- Site and drift-scale hydrogeologic modeling
- Hydrogeologic modeling and lab testing of fracturematrix coupling

2 Robust Waste Package Materials

Current Understanding

- Degradation mode studies performed on candidate materials (literature review)
- Designation of most appropriate materials

	Primary	Secondary
 Inner barrier 	Alloy 825	Alloy C-22
 Outer barrier 	A 516	2.25Cr-1Mo

- Crack growth studies of corrosion resistant materials
- Thermogravimetric testing of corrosion allowance materials
- Empirical observations of cladding life

2 **Robust Waste Package Materials** *Key Uncertainties*

- Range of possible near-field environments
- Corrosion rates under variable humidity and temperature
- Pitting corrosion of corrosion-resistant materials
 - Alloy 825 inner waste package
 - Zircaloy cladding
- Impact of microbiologically-induced corrosion

2 Robust Waste Package Materials

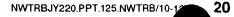
Plans for Reducing Uncertainties

- Consider range of near-field environments in 1988 Technical Site Suitability Evaluation and 2001-License Application
- Modeling and testing of pit corrosion processes
- Analogs showing material durability (iron, copper)
- Test materials for resistance to microbiologicallyinduced corrosion

3 Low Mobilization of Radionuclides

Current Understanding

- Spent fuel oxidation and UO₂ and spent fuel dissolution experiments for a range of possible nearfield environments
- Radionuclide solubility experiments for a range of possible near-field environments
- Some data on glass dissolution and alteration


Key Uncertainties

- Oxidation state of spent fuel
- Surface area of cladding breached
- Waste form dissolution rates in the presence of limited water (e.g. selection of rates for drip test)
- Existence and stability of waste form colloids
- Bounding neptunium and technetium solubilities for expected near-field environments

3 Low Mobilization of Radionuclides

Plans for Reducing Uncertainties

- Establish conservative, but realistic, assumptions for cladding performance
- Waste form dissolution testing (low saturation drip test)
- Establish conservative, but realistic, values for waste form dissolution rates
- Colloid investigation strategy
- Neptunium and technetium solubility experiments

4 Slow Release through EBS

Current Understanding

- Theoretical basis for predicting drift inflows in unsaturated media
- Theoretical considerations of advective flow through capillary barriers
- Laboratory measurements of diffusion rates in partially saturated media

4 Slow Release through EBS

Key Uncertainties

- Percent of waste package surface degraded to expose waste
- Potential for continuous liquid film to support diffusive release
- Emplacement strategy and layout

4 Slow Release through EBS

Plans for Reducing Uncertainties

- Use range of designs for 1998 Technical Site Suitability Evaluation and 2001-License Application
- Observe drift seeps in the ESF
- Laboratory measurements of diffusion rates in variably saturated media
- Determine if packing material/capillary barrier could improve performance
- Sensitivity analyses of a range of drift-scale thermohydrologic conceptual models

Slow Transport through Geosphere

Basis for Current Understanding

- Spatial distribution of infiltration rates
- Saturation profiles in unsaturated zone from deep boreholes
- Groundwater and paleo-groundwater dating
- Unsaturated zone hydrologic modeling
- Laboratory measurements of matrix imbibition and matrix diffusion
- Laboratory measurements of retardation ("minimum" k_d)
- Hydraulic gradients in saturated zone

24

Slow Transport Through Geosphere

Key Uncertainties

- Effect of thermal loads on percolation flux
- Young dates for some deep unsaturated zone groundwater
- Conceptual model of fracture-matrix coupling in partially saturated media
- Effect of long-term transient infiltration rates due to climate changes
- Dispersion caused by small-scale heterogeneity
- Nature and role of steep gradient

Slow Transport through Geosphere

Plans for Reducing Uncertainty

- Evaluate range of thermal loadings for 1998 Technical Site Suitability Evaluation and 2001-License Application
 - Maintain flexibility to deal with range of site conditions
- Obtain dates for ESF seeps and additional borehole samples
- C-well tracer experiments
- Sensitivity analyses of range of unsaturated zone and saturated zone flow and transport conceptual models
- Calico Hills transport experiments as determined by systems study
- Boreholes to investigate steep gradient

26

Summary: Key Uncertainties Related to Waste Isolation

- Percolation flux distribution through repository horizon
- Liquid saturation in and around emplacement drifts
- Material degradation and dissolution rate of spent fuel in low liquid saturation environment
- Diffusion rate through EBS and very near-field in low liquid saturation environment
- Fracture-matrix interactions in flow and transport
- Dilution expected in saturated zone

Other Important Considerations

- Preclosure factors
 - Extent of useable host rock/constructability
 - Seismic hazards and design solutions
 - Rock stability during extended retrieval period
- Alternate regulatory criteria
 - Time frame
 - Dilution in saturated zone

٠

Information/Analyses Priorities and Key Milestones

Overview of Testing Priorities

Surface-Based Program

- Use FY95 to analyze and interpret recently acquired data
- Use existing holes for pneumatic testing with limited number of strategically placed new boreholes by 1997
- Expand geophysics program to improve predictive capabilities
- Post 1997 program focused on support to Advanced Conceptual Design (ACD) and Title 1

Exploratory Studies Facility

- Focus pre-1998 tests on geology-hydrology
- 1997 2000 program develops engineering parameters for construction authorization
- Post 2000 focused on completion of long-duration coupled testing and performance monitoring

Technical Site Suitability: Key Sources of Site Information

Surface Based/Lab

- C-Well tracer tests
- Volcanic boreholes (3) to test anomalies in Crater Flat
- Geologic drilling program
 - Water table boreholes (~5 before FY98)
 - Systematic boreholes (2)
 - Unsaturated boreholes (4)
- Seismic reflection
 - Deep: Amargosa Valley to Crater Flat
 - Shallow/intermediate: across block (3 EW, 2 NS) and Yucca Wash
- Trenches for tectonics and seismic hazard completed in FY95
- Borehole rock properties measurements

ESF

- Radial boreholes and hydrochemistry in alcoves 1-7
- Observe seeps/perched water
- Fault characteristics/properties
 - Bow Ridge
 - Drillhole Wash
 - Sundance
 - Ghost Dance
- Geologic Mapping
- Consolidated sampling
 - geochemistry/mineralogy/petrology
 - rock-water interaction
 - thermal/mechanical properties
- Construction monitoring

Information/Analyses Priorities

License Application (2000/2001)

- Confirmatory hydrogeologic tests in ESF Corrosion rate tests over range of likely materials
- EBS diffusion test
- Interim results of long-duration coupled testing
- Tests and analyses to bound thermohydrologic response
- Tests and analyses to bound fracture-matrix coupling

Information/Analyses Priorities

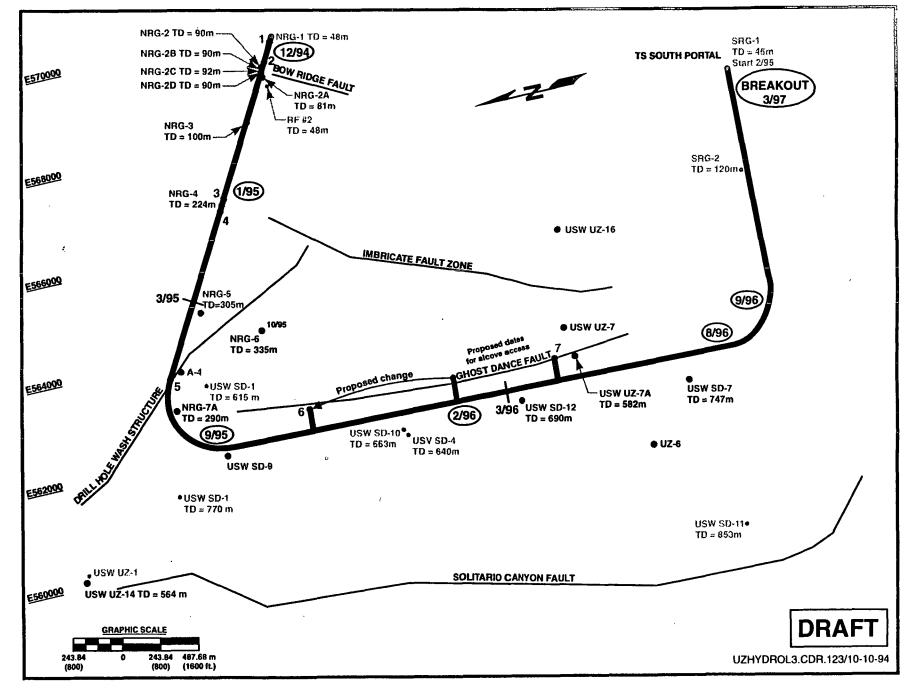
LA to Receive and Possess (~2008)

- Materials tests to confirm waste package design and cost
- Thermohydrologic tests to confirm repository design and cost
- Confirmatory hydrogeologic tests in repository drifts
- Long-term confirmatory tests
 - waste package material performance
 - cladding performance
 - waste matrix dissolution rates
- Increase confidence
 - fracture-matrix coupling

Backup

1

ESF Excavation Schedule Pre-1997 Milestones


TBM through Bow Ridge Fault & Rainier Mesa Formation	DEC 1994
Alcove 2-Bow Ridge Fault alcove complete Alcove 3-Paintbrush nonwelded contact Alcove 4-Paintbrush welded contact	2nd Quarter FY95
North ramp complete	2nd Quarter FY96 3rd Quarter FY96
TBM past 1st Ghost Dance Alcove (6)	4th Quarter FY96
1st Ghost Dance Alcove complete TBM past 2nd Ghost Dance Alcove (7)	4th Quarter FY96
2nd Ghost Dance Alcove complete	1st Quarter FY97 3rd Quarter FY97
Davlight at South Portal	

Schematic ESF Layout N **TS North** Ramp TSS - Supports Technical Site Suitability Report **TS South** LA - Supports License Application Ramp : . Imbricate Fault Zone Calico Hills Drifting (5) Drill Hole Wash Structure Ghost Dance Fault (7) 28+00-**(6**) **TS Main Drift** -North Ramp Extension ←TSS LA→ Solitario Canyon Fault

LYOTESFZ.CDR.124/10-11-94 36

Schematic of Surface-Based Drilling Program

. .

