OFFIC NUCLEA	U.S. DEPARTMENT OF ENERGY E OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT AR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING
SUBJECT:	WASTE PACKAGE DESIGN
PRESENTER:	HUGH A. BENTON
PRESENTER'S TITLE AND ORGANIZATION:	MANAGER, WASTE PACKAGE DEVELOPMENT MANAGEMENT AND OPERATING CONTRACTOR LAS VEGAS, NEVADA
TELEPHONE NUMBER:	(702) 794-1891
	LAS VEGAS. NEVADA
	APRIL 19-20, 1995

Topics

- Waste Package Barriers
- Current Designs

i

- Waste Package Costs
- Performance Analyses
 - Internal Heat Transfer
 - Shielding Options
 - Engineering Development Plans

Functions of EBS Materials

Component	Function	Potential Contribution to Safety		
		Aggressive conditions	Less aggressive conditions	
Backfill over Waste package	Protect from rock fall Divert dripping groundwater	To be evaluated	To be evaluated	
Packing underneath waste package	Sorb radionuclides	To be evaluated	To be evaluated	

PRE020.WP5.125.NWTRB

Functions of Barrier Materials

Component	Function	Potential Contribution to Safety			
		Aggressive conditions	Less aggressive conditions		
(3rd barrier) corrosion resistant	Control microbiologically influenced corrosion	high	(not used)		
2nd barrier corrosion allowance	Provide predictable corrosion rate	low	moderate		
anowance	Control radiolysis				
1st barrier corrosion resistant	Resist corrosion under expected conditions	high	high		
	Protect spent nuclear fuel from oxidation				

PRE020.WP5.125.NWTRB

Functions of Other Container Materials

Component	Function	Potential Contribution to Safety			
		Aggressive conditions	Less aggressive conditions		
Multi-purpose canister shell	Provide convenient handling at surface facilities	low	low		
Filler material	Control criticality, sorb radionuclides	moderate	moderate		
Fill gas	Prevent oxidation of fuel to U ₃ O ₈ Prevent cladding oxidation	moderate	moderate		
Spent nuclear fuel basket	Control criticality, conduct heat	high	high		

Function of Waste Form: Spent Nuclear Fuel

Component	onent Function Pote Safe		Potential Contribution to Safety		
		Aggressive conditions	Less aggressive conditions		
Spent nuclear fuel cladding	Protect UO ₂ from oxidation	high	high		
	Limit access of water to UO ₂				
Spent nuclear fuel oxide	Limit solubility of radionuclides in water	moderate	moderate		

PRE020.WP5.125.NWTRB

Function of Waste Form: High-Level Waste

Component	Function	Potential Contribution to Safety		
		Aggressive conditions	Less aggressive conditions	
Pour canister	Allow handling at surface facilities	low	low	
High-level waste glass	Limit solubility of radionuclides in water	moderate	moderate	

PRE020.WP5.125.NWTRB

Waste Package Barrier Materials

		Current Design		Alter	nate Design	
Container for	Barrier	Agg	ressive	Less Aggressive	Aggressive	Less Aggressive
Multi-Purpose Canister	Outer Middle	Mor	nel 400	A 516	Ceramic* 21/4 Cr-1Mo	2 1/4 Cr-1Mo
and Uncanistered Fuel	Inner	8	325	825	C-22	C-22
Defense High Level Waste	Outer Middle Inner Filler	Moi 70/3 {	nel 400 10 Cu-Ni 325	70/30 Cu-Ni 825	Monel 400 70/30 Cu-Ni C-22	70/30 Cu-Ni 825 C-22
					* 70/30 Cu-	Ni

WASTE PACKAGE PERCENT OF COST BY CATEGORY 21 PWR UNCANISTERED FUEL TUBE TYPE

COST	PERCENT OF WASTE PACKAGE
CATEGORY	COST
Material	69
Labor	13
Weld material	1
Other	17

PRE020,WP5.125.NWTRB

PRELIMINARY PREDECISIONAL DRAFT

Cost of Waste Package Materials

Material	Component	\$/kg
A 516 Carbon Steel	Outer Barrier	\$1.57
316L Stainless Steel	Basket Structure	3.20
6063 Aluminum	Thermal Shunt	6.61
C71500 Cupronickel (70/30)	Outer Barrier	11.46
Alloy 825	Inner Barrier	12.43
316L SS - Boron Alloy (316B6A)	Basket	28.66

Preliminary Predecisional Draft

Total Cost of Disposal Containers and Uncanistered Fuel Waste Packages

(With Contingency)

Disposal Containers and Uncanistered Fuel Waste Package	Number of Units	Unit Cost \$ (thousands)	Total Cost \$ (millions)
Large MPC Disposal Container: 21 PWR/40 BWR	6289	\$190	\$1,195
Small MPC Disposal Container: 12 PWR/24 BWR	2281	171	390
DHLW Disposal Container (4-canisters)	3362	284	955
21 PWR Uncanistered Fuel Waste Package (includes basket)	183	379	69
Performance Confirmation (assume 21 PWR)	5	379	2
Totals	12,120		\$2,611

Preliminary Predecisional Draft

Confinement by Cladding

- Intact cladding prevents release from UO₂
- Even perforated cladding (small pinhole) confines fuel and limits access by water

Conservative Approach to Evaluation

- Assume that radiolysis will convert atmosphere into aggressive species
- Assume that degradation is limited only by elemental availability

Degradation by Oxidation

- Occurs only after breach of disposal container
- Degradation mechanisms
 - General oxidation of cladding (all fuel)
 - Fuel oxidation to U_3O_8 and subsequent splitting of cladding (perforated cladding only)

Calculation of Amount of Degradation

- Fuel characteristics: 42 GWd/MTU, 22 years old, 3.92% enrichment
- Hottest rod in a 21 PWR multi-purpose canister, no backfill
- 4.3 m drift diameter
- 16 m waste package spacing
- Rate of degradation, as reported by Einziger (IHLRWMC 1994, p. 554)

Cladding Oxidation

- Worst-case conditions chosen
 - High thermal load (20.5 kg U/m² = 83 MTU/acre)
 - No protection by disposal container
- Only 2.3% of cladding thickness oxidizes in first 1000 years
- After 1000 years, cladding temperature is low; oxidation rate is negligible

Fuel Oxidation (Perforated Cladding Only)

- Considered both high and low thermal loads
 - $20.5 \text{ kg U/m}^2 = 83 \text{ MTU/acre}$

$$- 5.93 \text{ kg U/m}^2 = 24 \text{ MTU/acre}$$

 If container remains intact for even 200 years, splitting will not occur in first 10,000 years

Significance of Oxidation

- General oxidation of cladding is negligible
- <u>Perforated</u> cladding requires inert atmosphere to protect UO₂, but only during the period when container is too hot for aqueous corrosion

Specification for Multi-Purpose Canister Water Content

- "the residual water content of the multi-purpose canister (shall be) less than 0.25 volume percent"
- Multi-purpose canister is to be evacuated to pressure of no more than 300 Pa for 10 minutes
- But, vapor pressure of liquid water is at least 2600 Pa
- So, water is in vapor phase, amount of water is no more than 13 g

Potential Effects of Atmosphere in Multi-Purpose Canister

- Hydrogen embrittlement of fuel cladding
- Oxidation of cladding or multi-purpose canister interior
- Corrosion by radiolytically produced nitric acid

Hydrogen Embrittlement of Fuel Cladding

- For 21 PWR multi-purpose canister, hydrogen increase in cladding cannot exceed 0.6 ppm
- New cladding contains up to 25 ppm hydrogen
- Irradiated cladding may reach 500 to 600 ppm hydrogen
- Hydrogen embrittlement in multi-purpose canister is negligible

Oxidation of Cladding in Multi-Purpose Canister

- Total amount of oxygen in multi-purpose canister cannot exceed 15 g (11 g from water; 4 g from residual air)
- Oxidation of shell and basket is limited to 45 nm
- Oxidation of fuel cladding is limited to 11 nm
- Oxidation in multi-purpose canister is negligible

Corrosion by Nitric Acid (HNO₃) (Bulk Condensation)

- Oxygen supply limits partial pressure of HNO₃ to 170 Pa
- Vapor pressure of liquid 90% HNO₃ is 3,000 Pa at 22°C
- Vapor pressure increases rapidly with increasing temperature
- No condensation of HNO_3 can occur

Corrosion by Nitric Acid (Water Films)

- Even without radiolysis, relative humidity at 22°C is no larger than 15%
- Any radiolysis will reduce humidity
- Water-film corrosion normally requires relative humidities of 60% or higher
- No water-film corrosion can occur

Conclusions

- Specification for allowable amount of water was evaluated
- Considered potential for effects of
 - Hydrogen embrittlement
 - Oxidation
 - Nitric acid formation
- Even with very conservative treatment, effects of atmosphere (including water vapor) are negligible

Factors Affecting Thermal Response

Far-field temperatures depend on

Area mass loading (MTU/acre)

Near-field temperatures depend on

Far-field temperatures

Waste package spacing

Spent nuclear fuel age

Emplacement drift diameter

Waste package time-dependent heat output

Factors Affecting Thermal Response

Waste package internal temperatures depend on

Near-field temperatures

Spent nuclear fuel characteristics

Number of assemblies

Materials of fabrication

Design type (flux trap, burnup credit)

Decay of SNF Heat Over Time

Assembly Heat (Watts/assy)

Three Model Analysis Approach

Repository Emplacement

Provide Time-Dependent Boundary Conditions for Near-Field

1/4 SNF Assembly Determine Peak Cladding Temperatures

Waste Package Incorporate Specific Materials and Design Configuration

21 PWR MPC Temperatures

Finite-Element Model

Westinghouse 15x15 PWR SNF Assembly

Benchmark Evaluation Against TN-24P Tests

ANSYS 5.0 A FEB 16 1995

Temp	erature
Min	=192.5
Max	=221
	193
	194
	195
	197
	198
	200
	201
	203
	204
	205
	207
	208
	210
3334	211
	212
	214
	215
	217
	218
	220
	221
Deg	rees C
-	

TN-24P Benchmark 911.2 watt Assembly

Guide Tube Temps. Measured: 206.2 C Calculated: 214.6 C

In-Repository Radiation Shielding

Reasons for shielding

- Limit worker exposure
- Protect materials (radiolysis)

Repository Radiation Shielding

(Continued)

- Requirements
 - Title 10 CFR Part 60.131 (a) requires suitable shielding to meet Title 10 CFR Part 20 occupational dose limits in repository
 - Title 10 CFR Part 60.135 (a) (2) requires radiolysis effects be considered
 - Title 10 CFR Part 60.135 (b) restricts materials allowable in the waste package, limiting shielding materials which can be used
 - » Non-corrosion enhancing
 - » Non-pyrophoric

Shielding Designs

- Waste Package
 - Shielding for radiolysis effects, which could cause corrosion
 - Use waste package barrier materials
- Waste Package Transporter and Other Facilities
 - Shield for personnel safety
 - Use multi-layer gamma and neutron shielding materials

Radiation Shielding Options

- Current design of waste packages provide sufficient shielding for protection of materials against radiolysis
 - Dose rates at surface approximately 16 R/hr
 - Radiolysis threshold approximately 1,000 R/hr
- Could shield waste packages for worker safety by
 - thicker metallic outer barriers (>390 mm) would improve containment
 - shielding sleeves, without containment credit, (>420 mm) create thermal problems
 - both are large and heavy

Radiation Shielding Options

(Continued)

- Approximate weights of shielding on transporter (gamma and neutron shielding)
 - Depleted uranium and boron-polyethelene: 39 tonnes
 - Lead and boron-polyethelene: 42 tonnes
 - Steel and boron-polyethelene: 54 tonnes

Radiation Shielding Options

(Continued)

- Transporter shielding more efficient and less costly
 - Not left in repository
 - Would required temporary shielding to enter emplacement drift
 - Would require radiation hardening any instrumentation in emplacement drifts

Future Radiation Shielding Activities

- Evaluate engineered barrier system and waste package component activation
- Evaluate radiation-induced corrosion products in accident conditions
- Consider multiple waste package interactions under radiation

Future Radiation Shielding Activities

(Continued)

- Develop shielding needs for robotic/remote handling systems
- Evaluate emplacement drift shield door requirements
- Calculate emplacement operation radiation dose rates

Engineering Development Program Scope/Objectives

Develop methods and processes for waste package fabrication, remote closure, and inspection

- Fabrication techniques
 - Minimize stresses
 - Technically and economically acceptable
- Closure joint configurations
 - Narrow-gap welding conceptual design selection
 - Evaluate other remote welding techniques and methods

WASTE DISPOSAL CONTAINER CLOSURE JOINT CONCEPTUAL DESIGNS

(001111100)

- Closure Joint Configurations (Continued)
 - Establish joint design and weld process/ parameters
 - Minimize stresses
- Inspection of closure joint
 - Remote inspection methods required

(Continued)

- In-service inspection
 - Remote inspection methods required
 - Monitor waste package performance in repository
 - Required post-emplacement until repository closure

(Continued)

- Filler material
 - Criticality control
 - Chemical buffering for radionuclides
 - Cathodic protection
 - Function as mechanical packing
 - Improve thermal conductance

Time Table for Waste Package Engineering Development

	FY					
DEVELOPMENT TARGETS	95	96	97	98	99	00
FABRICATION TECHNIQUES		X	x	x		
CLOSURE JOINT CONFIGURATIONS	x	x	x	X		
INSPECTION OF CLOSURE JOINTS	X	X	x			
IN-SERVICE INSPECTION			x	x		
FILLER MATERIAL		x	x			

Linkage with Corrosion Research Program

- Edison Welding Institute interface
- Welded samples in material testing program
- Radiolysis catalized corrosion

Cooperation with Other Countries

 Focus '91 Conference 	Sept. 1991
Prague meeting	Sept. 1993
 Waste Package Workshop 	Sept. 1993
 Kyoto meeting 	Oct. 1994
 International High-Level Radioactive Waste Management Conference Papers 	94/95
 BW Fuel Co/Cogema Relationship 	On-going